🚀 意大利语基础句向量模型 sentence-bert-base-italian-xxl-cased
该模型基于 sentence-transformers 构建,可将句子和段落映射到 768 维的密集向量空间,适用于聚类、语义搜索等任务。它源自 dbmdz/bert-base-italian-xxl-uncased,更多信息可查看其模型卡片。
🚀 快速开始
本模型支持多种使用方式,以下将分别介绍不同库下的使用方法。
📦 安装指南
使用 sentence-transformers 库
若要使用 sentence-transformers
库,可通过以下命令进行安装:
pip install -U sentence-transformers
使用 FastEmbed 库
若要使用 FastEmbed
库,可通过以下命令进行安装:
pip install fastembed
💻 使用示例
使用 sentence-transformers 库
from sentence_transformers import SentenceTransformer
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-uncased')
embeddings = model.encode(sentences)
print(embeddings)
使用 FastEmbed 库
from fastembed import TextEmbedding
from fastembed.common.model_description import PoolingType, ModelSource
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
TextEmbedding.add_custom_model(
model="nickprock/sentence-bert-base-italian-xxl-uncased",
pooling=PoolingType.MEAN,
normalization=True,
sources=ModelSource(hf="nickprock/sentence-bert-base-italian-xxl-uncased"),
dim=768,
model_file="onnx/model_qint8_avx512_vnni.onnx",
)
model = TextEmbedding(model_name="nickprock/sentence-bert-base-italian-xxl-uncased")
embeddings = list(model.embed(sentences))
print(embeddings)
使用 HuggingFace Transformers 库
若不使用 sentence-transformers
库,可按以下方式使用模型:首先将输入传递给 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对本模型进行自动化评估,可参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练参数
本模型的训练参数如下:
DataLoader
使用 torch.utils.data.dataloader.DataLoader
,长度为 360,参数如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
使用 sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
损失函数。
fit() 方法参数
{
"epochs": 10,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 1500,
"warmup_steps": 360,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
本模型采用 MIT 许可证。