🚀 sentence-transformers/paraphrase-multilingual-mpnet-base-v2
這是一個 sentence-transformers 模型,它可以將句子和段落映射到 768 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
📦 安裝指南
如果你已經安裝了 sentence-transformers,使用這個模型會很簡單:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
安裝完成後,你可以像這樣使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
如果你沒有安裝 sentence-transformers,可以按以下方式使用模型:首先,將輸入數據通過 Transformer 模型,然後對上下文相關的詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
該模型由 sentence-transformers 訓練。
如果你覺得這個模型很有用,可以引用我們的論文 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
📄 許可證
本項目採用 Apache-2.0 許可證。
信息表格
屬性 |
詳情 |
支持語言 |
多語言,包括阿拉伯語(ar)、保加利亞語(bg)、加泰羅尼亞語(ca)等多種語言 |
模型類型 |
sentence-transformers |
任務類型 |
句子相似度 |
許可證 |
Apache-2.0 |