Climate Science Reranker
C
Climate Science Reranker
由nicolauduran45開發
這是一個基於交叉編碼器的氣候科學文本重排序模型,專門用於氣候科學領域的語義搜索和文本相關性排序。
下載量 26
發布時間 : 5/12/2025
模型概述
該模型計算文本對的分數,可用於氣候科學領域的文本重排序和語義搜索任務,基於MiniLM-L6-v2架構微調而來。
模型特點
氣候科學領域優化
專門針對氣候科學領域的文本進行了微調,能夠更好地理解該領域的專業術語和概念。
高性能重排序
在氣候科學評估數據集上取得了0.7068的NDCG@10分數,表現優異。
高效推理
基於MiniLM架構,在保持高性能的同時具有較高的推理效率。
模型能力
文本相關性評分
語義搜索重排序
氣候科學領域文本理解
使用案例
學術研究
氣候科學文獻檢索
用於氣候科學領域的文獻檢索系統,提高搜索結果的相關性。
在氣候科學評估數據集上NDCG@10達到0.7068
研究論文推薦
根據用戶查詢推薦最相關的氣候科學研究論文。
信息檢索
氣候政策文檔檢索
幫助政策制定者快速找到與特定氣候議題相關的政策文檔。
🚀 氣候科學重排器
這是一個基於 Cross Encoder 的模型,使用 sentence-transformers 庫從 cross-encoder/ms-marco-MiniLM-L6-v2 微調而來。它可以計算文本對的得分,可用於文本重排和語義搜索。
✨ 主要特性
- 基於 Cross Encoder 架構,能夠有效計算文本對之間的相關性得分。
- 從預訓練模型 cross-encoder/ms-marco-MiniLM-L6-v2 微調而來,具有良好的泛化能力。
- 適用於文本重排和語義搜索任務,可幫助提高搜索結果的準確性。
📦 安裝指南
首先,你需要安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import CrossEncoder
# 從 Hugging Face Hub 下載模型
model = CrossEncoder("cross_encoder_model_id")
# 獲取文本對的得分
pairs = [
["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must be fully investigated for robust decision-making. This study demonstrates how considering the societal needs of the people and the necessity for compensatory habitats, for example, an organic architectural design has developed, which aims to enhance rather than detract from the Mersey.'],
["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21–34 % of land areas will lose rainbow-days and 66–79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.'],
["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,5Langer M.C. Ezcurra M.D. Bittencourt J.S. Novas F.E. The origin and early evolution of dinosaurs.Biol. Rev. Camb. Philos. Soc. 2010; 85: 55-110https://doi.org/10.1111/j.1469-185X.2009.00094.xCrossref PubMed Scopus (212) Google Scholar,6Langer M.C. Godoy P.L. So volcanoes created the dinosaurs? a quantitative characterization of the early evolution of terrestrial pan-aves.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.899562Crossref PubMed Scopus (3) Google Scholar This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,8Benton M.J. Dinosaur success in the triassic: a noncompetitive ecological model.Q. Rev. Biol. 1983; 58: 29-55Crossref Scopus (170) Google Scholar However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,9Whiteside J.H. Lindström S. Irmis R.B. Glasspool I.J. Schaller M.F. Dunlavey M. Nesbitt S.J. Smith N.D. Turner A.H. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.Proc. Natl. Acad. Sci. USA. 2015; 112: 7909-7913https://doi.org/10.1073/pnas.1505252112Crossref PubMed Scopus (61) Google Scholar,10Bernardi M. Gianolla P. Petti F.M. Mietto P. Benton M.J. Dinosaur diversification linked with the Carnian pluvial episode.Nat. Commun. 2018; 9: 1499https://doi.org/10.1038/s41467-018-03996-1Crossref PubMed Scopus (87) Google Scholar,11Lovelace D.M. Hartman S.A. Mathewson P.D. Linzmeier B.J. Porter W.P. Modeling Dragons: using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs.PLoS One. 2020; 15e0223872https://doi.org/10.1371/journal.pone.0223872Crossref Scopus (8) Google Scholar,12Mancuso A.C. Benavente C.A. Irmis R.B. Mundil R. Evidence for the Carnian pluvial episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification.Gondwana Res. 2020; 86: 104-125https://doi.org/10.1016/j.gr.2020.05.009Crossref Scopus (35) Google Scholar,13Mancuso A.C. Irmis R.B. Pedernera T.E. Gaetano L.C. Benavente C.A. Breeden III B.T. Paleoenvironmental and biotic changes in the late triassic of Argentina: testing hypotheses of abiotic forcing at the basin scale.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.883788Crossref PubMed Scopus (4) Google Scholar,14Kent D.V. Clemmensen L.B. Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215–212 Ma, Late Triassic) dip in atmospheric pCO2.Proc. Natl. Acad. Sci. USA. 2021; 118e2020778118https://doi.org/10.1073/pnas.2020778118Crossref Scopus (16) Google Scholar,15Griffin C.T. Wynd B.M. Munyikwa D. Broderick T.J. Zondo M. Tolan S. Langer M.C. Nesbitt S.J. Taruvinga H.R. Africa\'s oldest dinosaurs reveal early suppression of dinosaur distribution.Nature. 2022; 609: 313-319https://doi.org/10.1038/s41586-022-05133-xCrossref PubMed Scopus (4) Google Scholar,16Olsen P. Sha J. Fang Y. Chang C. Whiteside J.H. Kinney S. Sues H.-D. Kent D. Schaller M. Vajda V. Arctic ice and the ecological rise of the dinosaurs.Sci. Adv. 2022; 8eabo6342https://doi.org/10.1126/sciadv.abo6342Crossref Scopus (5) Google Scholar Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.'],
["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'The development of technologies to slow climate change has been identified as a global imperative. Nonetheless, such ‘green’ technologies can potentially have negative impacts on biodiversity. We explored how climate change and the mining of lithium for green technologies influence surface water availability, primary productivity and the abundance of three threatened and economically important flamingo species in the ‘Lithium Triangle’ of the Chilean Andes. We combined climate and primary productivity data with remotely sensed measures of surface water levels and a 30-year dataset on flamingo abundance using structural equation modelling. We found that, regionally, flamingo abundance fluctuated dramatically from year-to-year in response to variation in surface water levels and primary productivity but did not exhibit any temporal trends. Locally, in the Salar de Atacama—where lithium mining is focused—we found that mining was negatively correlated with the abundance of two of the three flamingo species. These results suggest continued increases in lithium mining and declines in surface water could soon have dramatic effects on flamingo abundance across their range. Efforts to slow the expansion of mining and the impacts of climate change are, therefore, urgently needed to benefit local biodiversity and the local human economy that depends on it.'],
["The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.", 'Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
高級用法
# 根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
"The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.",
[
'Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must be fully investigated for robust decision-making. This study demonstrates how considering the societal needs of the people and the necessity for compensatory habitats, for example, an organic architectural design has developed, which aims to enhance rather than detract from the Mersey.',
'Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with at least one rainbow), with the greatest change under the highest emission scenario. Around 21–34 % of land areas will lose rainbow-days and 66–79 % will gain rainbow-days, with rainbow gain hotspots mainly in high-latitude and high-elevation regions with smaller human populations. Our research demonstrates that alterations to non-tangible environmental attributes due to climate change could be significant and are worthy of consideration and mitigation.',
'The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,5Langer M.C. Ezcurra M.D. Bittencourt J.S. Novas F.E. The origin and early evolution of dinosaurs.Biol. Rev. Camb. Philos. Soc. 2010; 85: 55-110https://doi.org/10.1111/j.1469-185X.2009.00094.xCrossref PubMed Scopus (212) Google Scholar,6Langer M.C. Godoy P.L. So volcanoes created the dinosaurs? a quantitative characterization of the early evolution of terrestrial pan-aves.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.899562Crossref PubMed Scopus (3) Google Scholar This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.Science. 2008; 321: 1485-1488https://doi.org/10.1126/science.1161833Crossref PubMed Scopus (334) Google Scholar,7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,8Benton M.J. Dinosaur success in the triassic: a noncompetitive ecological model.Q. Rev. Biol. 1983; 58: 29-55Crossref Scopus (170) Google Scholar However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7Tucker M.E. Benton M.J. Triassic environments, climates and reptile evolution.Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982; 40: 361-379https://doi.org/10.1016/0031-0182(82)90034-7Crossref Scopus (89) Google Scholar,9Whiteside J.H. Lindström S. Irmis R.B. Glasspool I.J. Schaller M.F. Dunlavey M. Nesbitt S.J. Smith N.D. Turner A.H. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.Proc. Natl. Acad. Sci. USA. 2015; 112: 7909-7913https://doi.org/10.1073/pnas.1505252112Crossref PubMed Scopus (61) Google Scholar,10Bernardi M. Gianolla P. Petti F.M. Mietto P. Benton M.J. Dinosaur diversification linked with the Carnian pluvial episode.Nat. Commun. 2018; 9: 1499https://doi.org/10.1038/s41467-018-03996-1Crossref PubMed Scopus (87) Google Scholar,11Lovelace D.M. Hartman S.A. Mathewson P.D. Linzmeier B.J. Porter W.P. Modeling Dragons: using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs.PLoS One. 2020; 15e0223872https://doi.org/10.1371/journal.pone.0223872Crossref Scopus (8) Google Scholar,12Mancuso A.C. Benavente C.A. Irmis R.B. Mundil R. Evidence for the Carnian pluvial episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification.Gondwana Res. 2020; 86: 104-125https://doi.org/10.1016/j.gr.2020.05.009Crossref Scopus (35) Google Scholar,13Mancuso A.C. Irmis R.B. Pedernera T.E. Gaetano L.C. Benavente C.A. Breeden III B.T. Paleoenvironmental and biotic changes in the late triassic of Argentina: testing hypotheses of abiotic forcing at the basin scale.Front. Earth Sci. 2022; 10https://doi.org/10.3389/feart.2022.883788Crossref PubMed Scopus (4) Google Scholar,14Kent D.V. Clemmensen L.B. Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215–212 Ma, Late Triassic) dip in atmospheric pCO2.Proc. Natl. Acad. Sci. USA. 2021; 118e2020778118https://doi.org/10.1073/pnas.2020778118Crossref Scopus (16) Google Scholar,15Griffin C.T. Wynd B.M. Munyikwa D. Broderick T.J. Zondo M. Tolan S. Langer M.C. Nesbitt S.J. Taruvinga H.R. Africa\'s oldest dinosaurs reveal early suppression of dinosaur distribution.Nature. 2022; 609: 313-319https://doi.org/10.1038/s41586-022-05133-xCrossref PubMed Scopus (4) Google Scholar,16Olsen P. Sha J. Fang Y. Chang C. Whiteside J.H. Kinney S. Sues H.-D. Kent D. Schaller M. Vajda V. Arctic ice and the ecological rise of the dinosaurs.Sci. Adv. 2022; 8eabo6342https://doi.org/10.1126/sciadv.abo6342Crossref Scopus (5) Google Scholar Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.',
'The development of technologies to slow climate change has been identified as a global imperative. Nonetheless, such ‘green’ technologies can potentially have negative impacts on biodiversity. We explored how climate change and the mining of lithium for green technologies influence surface water availability, primary productivity and the abundance of three threatened and economically important flamingo species in the ‘Lithium Triangle’ of the Chilean Andes. We combined climate and primary productivity data with remotely sensed measures of surface water levels and a 30-year dataset on flamingo abundance using structural equation modelling. We found that, regionally, flamingo abundance fluctuated dramatically from year-to-year in response to variation in surface water levels and primary productivity but did not exhibit any temporal trends. Locally, in the Salar de Atacama—where lithium mining is focused—we found that mining was negatively correlated with the abundance of two of the three flamingo species. These results suggest continued increases in lithium mining and declines in surface water could soon have dramatic effects on flamingo abundance across their range. Efforts to slow the expansion of mining and the impacts of climate change are, therefore, urgently needed to benefit local biodiversity and the local human economy that depends on it.',
'Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | Cross Encoder |
基礎模型 | cross-encoder/ms-marco-MiniLM-L6-v2 |
最大序列長度 | 512 個詞元 |
輸出標籤數量 | 1 個標籤 |
語言 | 英文 |
許可證 | apache-2.0 |
模型來源
- 文檔:Sentence Transformers 文檔
- 文檔:Cross Encoder 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Cross Encoders
評估
指標
Cross Encoder 重排
- 數據集:
climate-science-eval
- 使用
CrossEncoderRerankingEvaluator
進行評估,參數如下:
{
"at_k": 10,
"always_rerank_positives": true
}
指標 | 值 |
---|---|
map | 0.6629 (+0.4483) |
mrr@10 | 0.6554 (+0.4475) |
ndcg@10 | 0.7068 (+0.4669) |
訓練詳情
訓練數據集
未命名數據集
- 大小:263,476 個訓練樣本
- 列:
query
、answer
和label
- 基於前 1000 個樣本的近似統計信息:
| | 查詢 | 答案 | 標籤 |
|------|------|------|------|
| 類型 | 字符串 | 字符串 | 整數 |
| 詳情 |
- 最小:55 個字符
- 平均:178.19 個字符
- 最大:593 個字符
- 最小:13 個字符
- 平均:1510.36 個字符
- 最大:29945 個字符
- 0:~74.40%
- 1:~25.60%
- 樣本:
| 查詢 | 答案 | 標籤 |
|------|------|------|
|
The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.
|Currently there is renewed interest in harnessing the vast tidal resource to combat the twin challenges of climate change and energy security. However, within the UK no tidal barrage proposals have passed the development stage, this is due to a combination of high cost and environmental concerns. This paper demonstrates how a framework, such as the North West Hydro Resource Model can be applied to tidal barrages, with the Mersey barrage as a case study. The model materialised in order to provide developers with a tool to successfully identify the capacity of hydropower schemes in a specific location. A key feature of the resource model is the understanding that there is no single barrier to the utilisation of small hydropower but several obstacles, which together impede development. Thus, this paper contributes in part to a fully holistic treatment of tidal barrages, recognising that apart from energy generation, other environmental, societal and economic opportunities arise and must b...
|1
| |The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.
|Rainbows contribute to human wellbeing by providing an inspiring connection to nature. Because the rainbow is an atmospheric optical phenomenon that results from the refraction of sunlight by rainwater droplets, changes in precipitation and cloud cover due to anthropogenic climate forcing will alter rainbow distribution. Yet, we lack a basic understanding of the current spatial distribution of rainbows and how climate change might alter this pattern. To assess how climate change might affect rainbow viewing opportunities, we developed a global database of crowd-sourced photographed rainbows, trained an empirical model of rainbow occurrence, and applied this model to present-day climate and three future climate scenarios. Results suggest that the average terrestrial location on Earth currently has 117 ± 71 days per year with conditions suitable for rainbows. By 2100, climate change is likely to generate a 4.0–4.9 % net increase in mean global annual rainbow-days (i.e., days with at leas...
|0
| |The researchers say that with the right design a Mersey barrage has the potential to become a globally identifiable piece of architectural infrastructure - a 'hydropower landmark' boosting tourism to the region.
|The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1Brusatte S.L. Benton M.J. Ruta M. Lloyd G.T. The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.Biol. Lett. 2008; 4: 733-736https://doi.org/10.1098/rsbl.2008.0441Crossref PubMed Scopus (105) Google Scholar,2Irmis R.B. Evaluating hypotheses for the early diversification of dinosaurs.Earth Environ. Sci. Trans. R. Soc. Edinb. 2010; 101: 397-426https://doi.org/10.1017/S1755691011020068Crossref Scopus (94) Google Scholar,3Benton M.J. Forth J. Langer M.C. Models for the rise of the dinosaurs.Curr. Biol. 2014; 24: R87-R95https://doi.org/10.1016/j.cub.2013.11.063Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, on...
|0
| - 損失函數:
BinaryCrossEntropyLoss
,參數如下:
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": 6
}
訓練超參數
非默認超參數
eval_strategy
:stepsper_device_train_batch_size
:16per_device_eval_batch_size
:16learning_rate
:2e-05warmup_ratio
:0.1fp16
:Truedataloader_num_workers
:4load_best_model_at_end
:True
所有超參數
點擊展開
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:2e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:3max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:4dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
:0fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Nonehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseinclude_for_metrics
:[]eval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falseaverage_tokens_across_devices
:Falseprompts
:Nonebatch_sampler
:batch_samplermulti_dataset_batch_sampler
:proportional
訓練日誌
點擊展開
輪次 | 步數 | 訓練損失 | climate-science-eval_ndcg@10 |
---|---|---|---|
0.0001 | 1 | 6.4826 | - |
0.0061 | 100 | 6.3516 | - |
0.0121 | 200 | 5.1792 | - |
0.0182 | 300 | 2.9628 | - |
0.0243 | 400 | 1.8946 | - |
0.0304 | 500 | 1.3992 | - |
0.0364 | 600 | 1.4469 | - |
0.0425 | 700 | 1.1841 | - |
0.0486 | 800 | 0.9967 | - |
0.0547 | 900 | 0.9914 | - |
0.0607 | 1000 | 0.7138 | 0.6113 (+0.3713) |
0.0668 | 1100 | 0.6944 | - |
0.0729 | 1200 | 0.7374 | - |
0.0789 | 1300 | 0.7249 | - |
0.0850 | 1400 | 0.8826 | - |
0.0911 | 1500 | 0.6886 | - |
0.0972 | 1600 | 0.8185 | - |
0.1032 | 1700 | 0.6946 | - |
0.1093 | 1800 | 0.7231 | - |
0.1154 | 1900 | 0.668 | - |
0.1214 | 2000 | 0.6434 | 0.6325 (+0.3926) |
0.1275 | 2100 | 0.7417 | - |
0.1336 | 2200 | 0.6777 | - |
0.1397 | 2300 | 0.779 | - |
0.1457 | 2400 | 0.6876 | - |
0.1518 | 2500 | 0.6619 | - |
0.1579 | 2600 | 0.6626 | - |
0.1640 | 2700 | 0.7394 | - |
0.1700 | 2800 | 0.6654 | - |
0.1761 | 2900 | 0.6026 | - |
0.1822 | 3000 | 0.6838 | 0.6417 (+0.4018) |
0.1882 | 3100 | 0.6423 | - |
0.1943 | 3200 | 0.6559 | - |
0.2004 | 3300 | 0.6097 | - |
0.2065 | 3400 | 0.6564 | - |
0.2125 | 3500 | 0.6912 | - |
0.2186 | 3600 | 0.6183 | - |
0.2247 | 3700 | 0.5585 | - |
0.2308 | 3800 | 0.6748 | - |
0.2368 | 3900 | 0.6165 | - |
0.2429 | 4000 | 0.6358 | 0.6529 (+0.4130) |
0.2490 | 4100 | 0.6473 | - |
0.2550 | 4200 | 0.6766 | - |
0.2611 | 4300 | 0.6603 | - |
0.2672 | 4400 | 0.5778 | - |
0.2733 | 4500 | 0.6732 | - |
0.2793 | 4600 | 0.605 | - |
0.2854 | 4700 | 0.6943 | - |
0.2915 | 4800 | 0.5776 | - |
0.2975 | 4900 | 0.706 | - |
0.3036 | 5000 | 0.5758 | 0.6559 (+0.4160) |
0.3097 | 5100 | 0.6596 | - |
0.3158 | 5200 | 0.6466 | - |
0.3218 | 5300 | 0.6116 | - |
0.3279 | 5400 | 0.5654 | - |
0.3340 | 5500 | 0.643 | - |
0.3401 | 5600 | 0.7281 | - |
0.3461 | 5700 | 0.6295 | - |
0.3522 | 5800 | 0.6555 | - |
0.3583 | 5900 | 0.6671 | - |
0.3643 | 6000 | 0.6647 | 0.6537 (+0.4138) |
0.3704 | 6100 | 0.5458 | - |
0.3765 | 6200 | 0.6279 | - |
0.3826 | 6300 | 0.6575 | - |
0.3886 | 6400 | 0.6206 | - |
0.3947 | 6500 | 0.5802 | - |
0.4008 | 6600 | 0.7117 | - |
0.4068 | 6700 | 0.589 | - |
0.4129 | 6800 | 0.6245 | - |
0.4190 | 6900 | 0.5346 | - |
0.4251 | 7000 | 0.7323 | 0.6559 (+0.4160) |
0.4311 | 7100 | 0.5407 | - |
0.4372 | 7200 | 0.53 | - |
0.4433 | 7300 | 0.5586 | - |
0.4494 | 7400 | 0.6219 | - |
0.4554 | 7500 | 0.6396 | - |
0.4615 | 7600 | 0.54 | - |
0.4676 | 7700 | 0.6284 | - |
0.4736 | 7800 | 0.6021 | - |
0.4797 | 7900 | 0.6326 | - |
0.4858 | 8000 | 0.6375 | 0.6691 (+0.4291) |
0.4919 | 8100 | 0.5402 | - |
0.4979 | 8200 | 0.582 | - |
0.5040 | 8300 | 0.5382 | - |
0.5101 | 8400 | 0.581 | - |
0.5162 | 8500 | 0.6062 | - |
0.5222 | 8600 | 0.5804 | - |
0.5283 | 8700 | 0.6233 | - |
0.5344 | 8800 | 0.5813 | - |
0.5404 | 8900 | 0.5619 | - |
0.5465 | 9000 | 0.5328 | 0.6694 (+0.4295) |
0.5526 | 9100 | 0.5371 | - |
0.5587 | 9200 | 0.6534 | - |
0.5647 | 9300 | 0.5395 | - |
0.5708 | 9400 | 0.577 | - |
0.5769 | 9500 | 0.5936 | - |
0.5829 | 9600 | 0.5947 | - |
0.5890 | 9700 | 0.5806 | - |
0.5951 | 9800 | 0.6236 | - |
0.6012 | 9900 | 0.6087 | - |
0.6072 | 10000 | 0.5466 | 0.6712 (+0.4313) |
0.6133 | 10100 | 0.6824 | - |
0.6194 | 10200 | 0.5657 | - |
0.6255 | 10300 | 0.5772 | - |
0.6315 | 10400 | 0.6068 | - |
0.6376 | 10500 | 0.4815 | - |
0.6437 | 10600 | 0.527 | - |
0.6497 | 10700 | 0.6041 | - |
0.6558 | 10800 | 0.5542 | - |
0.6619 | 10900 | 0.5846 | - |
0.6680 | 11000 | 0.5559 | 0.6683 (+0.4284) |
0.6740 | 11100 | 0.6235 | - |
0.6801 | 11200 | 0.581 | - |
0.6862 | 11300 | 0.5931 | - |
0.6923 | 11400 | 0.532 | - |
0.6983 | 11500 | 0.5832 | - |
0.7044 | 11600 | 0.4815 | - |
0.7105 | 11700 | 0.7507 | - |
0.7165 | 11800 | 0.555 | - |
0.7226 | 11900 | 0.585 | - |
0.7287 | 12000 | 0.6486 | 0.6711 (+0.4311) |
0.7348 | 12100 | 0.6077 | - |
0.7408 | 12200 | 0.5116 | - |
0.7469 | 12300 | 0.6163 | - |
0.7530 | 12400 | 0.6205 | - |
0.7590 | 12500 | 0.5086 | - |
0.7651 | 12600 | 0.5544 | - |
0.7712 | 12700 | 0.4743 | - |
0.7773 | 12800 | 0.5854 | - |
0.7833 | 12900 | 0.5681 | - |
0.7894 | 13000 | 0.6179 | 0.6760 (+0.4360) |
0.7955 | 13100 | 0.5958 | - |
0.8016 | 13200 | 0.5162 | - |
0.8076 | 13300 | 0.609 | - |
0.8137 | 13400 | 0.4877 | - |
0.8198 | 13500 | 0.6157 | - |
0.8258 | 13600 | 0.5638 | - |
0.8319 | 13700 | 0.5049 | - |
0.8380 | 13800 | 0.7226 | - |
0.8441 | 13900 | 0.515 | - |
0.8501 | 14000 | 0.5564 | 0.6822 (+0.4423) |
0.8562 | 14100 | 0.5618 | - |
0.8623 | 14200 | 0.5448 | - |
0.8684 | 14300 | 0.5693 | - |
0.8744 | 14400 | 0.6417 | - |
0.8805 | 14500 | 0.5609 | - |
0.8866 | 14600 | 0.6033 | - |
0.8926 | 14700 | 0.6355 | - |
0.8987 | 14800 | 0.5322 | - |
0.9048 | 14900 | 0.519 | - |
0.9109 | 15000 | 0.5662 | 0.6764 (+0.4365) |
0.9169 | 15100 | 0.593 | - |
0.9230 | 15200 | 0.6004 | - |
0.9291 | 15300 | 0.5673 | - |
0.9351 | 15400 | 0.5142 | - |
0.9412 | 15500 | 0.5859 | - |
0.9473 | 15600 | 0.6421 | - |
0.9534 | 15700 | 0.4822 | - |
0.9594 | 15800 | 0.6082 | - |
0.9655 | 15900 | 0.5373 | - |
0.9716 | 16000 | 0.6102 | 0.6729 (+0.4330) |
0.9777 | 16100 | 0.5109 | - |
0.9837 | 16200 | 0.6156 | - |
0.9898 | 16300 | 0.6408 | - |
0.9959 | 16400 | 0.5031 | - |
1.0019 | 16500 | 0.4652 | - |
1.0080 | 16600 | 0.3893 | - |
1.0141 | 16700 | 0.6276 | - |
1.0202 | 16800 | 0.5526 | - |
1.0262 | 16900 | 0.551 | - |
1.0323 | 17000 | 0.5066 | 0.6832 (+0.4432) |
1.0384 | 17100 | 0.5074 | - |
1.0444 | 17200 | 0.48 | - |
1.0505 | 17300 | 0.6073 | - |
1.0566 | 17400 | 0.485 | - |
1.0627 | 17500 | 0.4927 | - |
1.0687 | 17600 | 0.597 | - |
1.0748 | 17700 | 0.4376 | - |
1.0809 | 17800 | 0.4935 | - |
1.0870 | 17900 | 0.5702 | - |
1.0930 | 18000 | 0.4482 | 0.6825 (+0.4426) |
1.0991 | 18100 | 0.5183 | - |
1.1052 | 18200 | 0.4593 | - |
1.1112 | 18300 | 0.4775 | - |
1.1173 | 18400 | 0.5831 | - |
1.1234 | 18500 | 0.4942 | - |
1.1295 | 18600 | 0.5684 | - |
1.1355 | 18700 | 0.5214 | - |
1.1416 | 18800 | 0.5292 | - |
1.1477 | 18900 | 0.5163 | - |
1.1538 | 19000 | 0.5305 | 0.6868 (+0.4469) |
1.1598 | 19100 | 0.4507 | - |
1.1659 | 19200 | 0.4699 | - |
1.1720 | 19300 | 0.4532 | - |
1.1780 | 19400 | 0.4853 | - |
1.1841 | 19500 | 0.5169 | - |
1.1902 | 19600 | 0.5927 | - |
1.1963 | 19700 | 0.5777 | - |
1.2023 | 19800 | 0.5041 | - |
1.2084 | 19900 | 0.5309 | - |
1.2145 | 20000 | 0.4426 | 0.6809 (+0.4410) |
1.2205 | 20100 | 0.54 | - |
1.2266 | 20200 | 0.5692 | - |
1.2327 | 20300 | 0.5004 | - |
1.2388 | 20400 | 0.5044 | - |
1.2448 | 20500 | 0.4574 | - |
1.2509 | 20600 | 0.6132 | - |
1.2570 | 20700 | 0.4477 | - |
1.2631 | 20800 | 0.4805 | - |
1.2691 | 20900 | 0.6127 | - |
1.2752 | 21000 | 0.4349 | 0.6914 (+0.4515) |
1.2813 | 21100 | 0.6595 | - |
1.2873 | 21200 | 0.5234 | - |
1.2934 | 21300 | 0.4525 | - |
1.2995 | 21400 | 0.3841 | - |
1.3056 | 21500 | 0.5215 | - |
1. |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98