XYZ Embedding Zh
模型概述
該模型專門為中文文本設計,能夠高效地將文本轉換為高維向量表示,支持多種自然語言處理任務,如信息檢索、重排序等。
模型特點
高維向量表示
將句子和段落映射到1792維的密集向量空間,捕捉豐富的語義信息。
多任務支持
支持多種任務,包括句子相似度計算、特徵提取、重排序和信息檢索。
中文優化
專門針對中文文本進行優化,能夠更好地處理中文語義。
模型能力
句子相似度計算
特徵提取
文本重排序
信息檢索
使用案例
信息檢索
醫療問答檢索
在醫療問答數據集中進行信息檢索,幫助用戶快速找到相關答案。
在 MTEB Cmedqa檢索 數據集上,map_at_10 達到 41.228。
電商產品檢索
在電商平臺上進行產品檢索,提升用戶搜索體驗。
在 MTEB 電商檢索 數據集上,ndcg_at_10 達到 69.719。
文本重排序
醫療問答重排序
對醫療問答結果進行重排序,提升答案的相關性。
在 MTEB CMedQAv1 數據集上,map 達到 89.618。
通用文本重排序
對通用文本檢索結果進行重排序,優化搜索結果。
在 MTEB T2重排序 數據集上,map 達到 69.066。
🚀 XYZ-embedding-zh
XYZ-embedding-zh 是一個基於 sentence-transformers 的模型,它能夠將句子和段落映射到 1792 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
使用該模型前,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
然後,你可以按照以下方式使用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fangxq/XYZ-embedding-zh')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主要特性
- 能夠將句子和段落映射到 1792 維的密集向量空間。
- 可用於聚類或語義搜索等任務。
📦 安裝指南
使用該模型前,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fangxq/XYZ-embedding-zh')
embeddings = model.encode(sentences)
print(embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
引用與作者
原文檔未提供相關內容。
模型指標詳情
數據集名稱 | 任務類型 | 指標類型 | 指標值 |
---|---|---|---|
MTEB CMedQAv1 | Reranking | map | 89.61792115239176 |
MTEB CMedQAv1 | Reranking | mrr | 91.46722222222222 |
MTEB CMedQAv1 | Reranking | main_score | 89.61792115239176 |
MTEB CMedQAv2 | Reranking | map | 89.22040591564271 |
MTEB CMedQAv2 | Reranking | mrr | 91.2995238095238 |
MTEB CMedQAv2 | Reranking | main_score | 89.22040591564271 |
MTEB CmedqaRetrieval | Retrieval | map_at_1 | 27.939000000000004 |
MTEB CmedqaRetrieval | Retrieval | map_at_10 | 41.227999999999994 |
MTEB CmedqaRetrieval | Retrieval | map_at_100 | 43.018 |
MTEB CmedqaRetrieval | Retrieval | map_at_1000 | 43.120000000000005 |
MTEB CmedqaRetrieval | Retrieval | map_at_3 | 36.895 |
MTEB CmedqaRetrieval | Retrieval | map_at_5 | 39.373999999999995 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_1 | 42.136 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_10 | 50.394000000000005 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_100 | 51.288 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_1000 | 51.324000000000005 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_3 | 47.887 |
MTEB CmedqaRetrieval | Retrieval | mrr_at_5 | 49.362 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_1 | 42.136 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_10 | 47.899 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_100 | 54.730999999999995 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_1000 | 56.462999999999994 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_3 | 42.66 |
MTEB CmedqaRetrieval | Retrieval | ndcg_at_5 | 44.913 |
MTEB CmedqaRetrieval | Retrieval | precision_at_1 | 42.136 |
MTEB CmedqaRetrieval | Retrieval | precision_at_10 | 10.52 |
MTEB CmedqaRetrieval | Retrieval | precision_at_100 | 1.6070000000000002 |
MTEB CmedqaRetrieval | Retrieval | precision_at_1000 | 0.183 |
MTEB CmedqaRetrieval | Retrieval | precision_at_3 | 24.064 |
MTEB CmedqaRetrieval | Retrieval | precision_at_5 | 17.374000000000002 |
MTEB CmedqaRetrieval | Retrieval | recall_at_1 | 27.939000000000004 |
MTEB CmedqaRetrieval | Retrieval | recall_at_10 | 58.29600000000001 |
MTEB CmedqaRetrieval | Retrieval | recall_at_100 | 86.504 |
MTEB CmedqaRetrieval | Retrieval | recall_at_1000 | 98.105 |
MTEB CmedqaRetrieval | Retrieval | recall_at_3 | 42.475 |
MTEB CmedqaRetrieval | Retrieval | recall_at_5 | 49.454 |
MTEB CmedqaRetrieval | Retrieval | main_score | 47.899 |
MTEB CovidRetrieval | Retrieval | map_at_1 | 77.371 |
MTEB CovidRetrieval | Retrieval | map_at_10 | 85.229 |
MTEB CovidRetrieval | Retrieval | map_at_100 | 85.358 |
MTEB CovidRetrieval | Retrieval | map_at_1000 | 85.36 |
MTEB CovidRetrieval | Retrieval | map_at_3 | 84.176 |
MTEB CovidRetrieval | Retrieval | map_at_5 | 84.79299999999999 |
MTEB CovidRetrieval | Retrieval | mrr_at_1 | 77.661 |
MTEB CovidRetrieval | Retrieval | mrr_at_10 | 85.207 |
MTEB CovidRetrieval | Retrieval | mrr_at_100 | 85.33699999999999 |
MTEB CovidRetrieval | Retrieval | mrr_at_1000 | 85.339 |
MTEB CovidRetrieval | Retrieval | mrr_at_3 | 84.229 |
MTEB CovidRetrieval | Retrieval | mrr_at_5 | 84.79299999999999 |
MTEB CovidRetrieval | Retrieval | ndcg_at_1 | 77.766 |
MTEB CovidRetrieval | Retrieval | ndcg_at_10 | 88.237 |
MTEB CovidRetrieval | Retrieval | ndcg_at_100 | 88.777 |
MTEB CovidRetrieval | Retrieval | ndcg_at_1000 | 88.818 |
MTEB CovidRetrieval | Retrieval | ndcg_at_3 | 86.16 |
MTEB CovidRetrieval | Retrieval | ndcg_at_5 | 87.22 |
MTEB CovidRetrieval | Retrieval | precision_at_1 | 77.766 |
MTEB CovidRetrieval | Retrieval | precision_at_10 | 9.841999999999999 |
MTEB CovidRetrieval | Retrieval | precision_at_100 | 1.0070000000000001 |
MTEB CovidRetrieval | Retrieval | precision_at_1000 | 0.101 |
MTEB CovidRetrieval | Retrieval | precision_at_3 | 30.875000000000004 |
MTEB CovidRetrieval | Retrieval | precision_at_5 | 19.073 |
MTEB CovidRetrieval | Retrieval | recall_at_1 | 77.371 |
MTEB CovidRetrieval | Retrieval | recall_at_10 | 97.366 |
MTEB CovidRetrieval | Retrieval | recall_at_100 | 99.684 |
MTEB CovidRetrieval | Retrieval | recall_at_1000 | 100.0 |
MTEB CovidRetrieval | Retrieval | recall_at_3 | 91.702 |
MTEB CovidRetrieval | Retrieval | recall_at_5 | 94.31 |
MTEB CovidRetrieval | Retrieval | main_score | 88.237 |
MTEB DuRetrieval | Retrieval | map_at_1 | 27.772000000000002 |
MTEB DuRetrieval | Retrieval | map_at_10 | 84.734 |
MTEB DuRetrieval | Retrieval | map_at_100 | 87.298 |
MTEB DuRetrieval | Retrieval | map_at_1000 | 87.32900000000001 |
MTEB DuRetrieval | Retrieval | map_at_3 | 59.431 |
MTEB DuRetrieval | Retrieval | map_at_5 | 74.82900000000001 |
MTEB DuRetrieval | Retrieval | mrr_at_1 | 93.65 |
MTEB DuRetrieval | Retrieval | mrr_at_10 | 95.568 |
MTEB DuRetrieval | Retrieval | mrr_at_100 | 95.608 |
MTEB DuRetrieval | Retrieval | mrr_at_1000 | 95.609 |
MTEB DuRetrieval | Retrieval | mrr_at_3 | 95.267 |
MTEB DuRetrieval | Retrieval | mrr_at_5 | 95.494 |
MTEB DuRetrieval | Retrieval | ndcg_at_1 | 93.65 |
MTEB DuRetrieval | Retrieval | ndcg_at_10 | 90.794 |
MTEB DuRetrieval | Retrieval | ndcg_at_100 | 92.88300000000001 |
MTEB DuRetrieval | Retrieval | ndcg_at_1000 | 93.144 |
MTEB DuRetrieval | Retrieval | ndcg_at_3 | 90.32 |
MTEB DuRetrieval | Retrieval | ndcg_at_5 | 89.242 |
MTEB DuRetrieval | Retrieval | precision_at_1 | 93.65 |
MTEB DuRetrieval | Retrieval | precision_at_10 | 42.9 |
MTEB DuRetrieval | Retrieval | precision_at_100 | 4.835 |
MTEB DuRetrieval | Retrieval | precision_at_1000 | 0.49 |
MTEB DuRetrieval | Retrieval | precision_at_3 | 80.85 |
MTEB DuRetrieval | Retrieval | precision_at_5 | 68.14 |
MTEB DuRetrieval | Retrieval | recall_at_1 | 27.772000000000002 |
MTEB DuRetrieval | Retrieval | recall_at_10 | 91.183 |
MTEB DuRetrieval | Retrieval | recall_at_100 | 98.219 |
MTEB DuRetrieval | Retrieval | recall_at_1000 | 99.55000000000001 |
MTEB DuRetrieval | Retrieval | recall_at_3 | 60.911 |
MTEB DuRetrieval | Retrieval | recall_at_5 | 78.31099999999999 |
MTEB DuRetrieval | Retrieval | main_score | 90.794 |
MTEB EcomRetrieval | Retrieval | map_at_1 | 54.6 |
MTEB EcomRetrieval | Retrieval | map_at_10 | 64.742 |
MTEB EcomRetrieval | Retrieval | map_at_100 | 65.289 |
MTEB EcomRetrieval | Retrieval | map_at_1000 | 65.29700000000001 |
MTEB EcomRetrieval | Retrieval | map_at_3 | 62.183 |
MTEB EcomRetrieval | Retrieval | map_at_5 | 63.883 |
MTEB EcomRetrieval | Retrieval | mrr_at_1 | 54.6 |
MTEB EcomRetrieval | Retrieval | mrr_at_10 | 64.742 |
MTEB EcomRetrieval | Retrieval | mrr_at_100 | 65.289 |
MTEB EcomRetrieval | Retrieval | mrr_at_1000 | 65.29700000000001 |
MTEB EcomRetrieval | Retrieval | mrr_at_3 | 62.183 |
MTEB EcomRetrieval | Retrieval | mrr_at_5 | 63.883 |
MTEB EcomRetrieval | Retrieval | ndcg_at_1 | 54.6 |
MTEB EcomRetrieval | Retrieval | ndcg_at_10 | 69.719 |
MTEB EcomRetrieval | Retrieval | ndcg_at_100 | 72.148 |
MTEB EcomRetrieval | Retrieval | ndcg_at_1000 | 72.393 |
MTEB EcomRetrieval | Retrieval | ndcg_at_3 | 64.606 |
MTEB EcomRetrieval | Retrieval | ndcg_at_5 | 67.682 |
MTEB EcomRetrieval | Retrieval | precision_at_1 | 54.6 |
MTEB EcomRetrieval | Retrieval | precision_at_10 | 8.53 |
MTEB EcomRetrieval | Retrieval | precision_at_100 | 0.962 |
MTEB EcomRetrieval | Retrieval | precision_at_1000 | 0.098 |
MTEB EcomRetrieval | Retrieval | precision_at_3 | 23.867 |
MTEB EcomRetrieval | Retrieval | precision_at_5 | 15.82 |
MTEB EcomRetrieval | Retrieval | recall_at_1 | 54.6 |
MTEB EcomRetrieval | Retrieval | recall_at_10 | 85.3 |
MTEB EcomRetrieval | Retrieval | recall_at_100 | 96.2 |
MTEB EcomRetrieval | Retrieval | recall_at_1000 | 98.2 |
MTEB EcomRetrieval | Retrieval | recall_at_3 | 71.6 |
MTEB EcomRetrieval | Retrieval | recall_at_5 | 79.10000000000001 |
MTEB EcomRetrieval | Retrieval | main_score | 69.719 |
MTEB MMarcoReranking | Reranking | map | 35.30260957061897 |
MTEB MMarcoReranking | Reranking | mrr | 34.098015873015875 |
MTEB MMarcoReranking | Reranking | main_score | 35.30260957061897 |
MTEB MMarcoRetrieval | Retrieval | map_at_1 | 69.51899999999999 |
MTEB MMarcoRetrieval | Retrieval | map_at_10 | 78.816 |
MTEB MMarcoRetrieval | Retrieval | map_at_100 | 79.08500000000001 |
MTEB MMarcoRetrieval | Retrieval | map_at_1000 | 79.091 |
MTEB MMarcoRetrieval | Retrieval | map_at_3 | 76.999 |
MTEB MMarcoRetrieval | Retrieval | map_at_5 | 78.194 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_1 | 71.80499999999999 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_10 | 79.29899999999999 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_100 | 79.532 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_1000 | 79.537 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_3 | 77.703 |
MTEB MMarcoRetrieval | Retrieval | mrr_at_5 | 78.75999999999999 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_1 | 71.80499999999999 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_10 | 82.479 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_100 | 83.611 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_1000 | 83.76400000000001 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_3 | 79.065 |
MTEB MMarcoRetrieval | Retrieval | ndcg_at_5 | 81.092 |
MTEB MMarcoRetrieval | Retrieval | precision_at_1 | 71.80499999999999 |
MTEB MMarcoRetrieval | Retrieval | precision_at_10 | 9.91 |
MTEB MMarcoRetrieval | Retrieval | precision_at_100 | 1.046 |
MTEB MMarcoRetrieval | Retrieval | precision_at_1000 | 0.106 |
MTEB MMarcoRetrieval | Retrieval | precision_at_3 | 29.727999999999998 |
MTEB MMarcoRetrieval | Retrieval | precision_at_5 | 18.908 |
MTEB MMarcoRetrieval | Retrieval | recall_at_1 | 69.51899999999999 |
MTEB MMarcoRetrieval | Retrieval | recall_at_10 | 93.24 |
MTEB MMarcoRetrieval | Retrieval | recall_at_100 | 98.19099999999999 |
MTEB MMarcoRetrieval | Retrieval | recall_at_1000 | 99.36500000000001 |
MTEB MMarcoRetrieval | Retrieval | recall_at_3 | 84.308 |
MTEB MMarcoRetrieval | Retrieval | recall_at_5 | 89.119 |
MTEB MMarcoRetrieval | Retrieval | main_score | 82.479 |
MTEB MedicalRetrieval | Retrieval | map_at_1 | 57.8 |
MTEB MedicalRetrieval | Retrieval | map_at_10 | 64.215 |
MTEB MedicalRetrieval | Retrieval | map_at_100 | 64.78 |
MTEB MedicalRetrieval | Retrieval | map_at_1000 | 64.81099999999999 |
MTEB MedicalRetrieval | Retrieval | map_at_3 | 62.64999999999999 |
MTEB MedicalRetrieval | Retrieval | map_at_5 | 63.57000000000001 |
MTEB MedicalRetrieval | Retrieval | mrr_at_1 | 58.099999999999994 |
MTEB MedicalRetrieval | Retrieval | mrr_at_10 | 64.371 |
MTEB MedicalRetrieval | Retrieval | mrr_at_100 | 64.936 |
MTEB MedicalRetrieval | Retrieval | mrr_at_1000 | 64.96600000000001 |
MTEB MedicalRetrieval | Retrieval | mrr_at_3 | 62.8 |
MTEB MedicalRetrieval | Retrieval | mrr_at_5 | 63.739999999999995 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_1 | 57.8 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_10 | 67.415 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_100 | 70.38799999999999 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_1000 | 71.229 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_3 | 64.206 |
MTEB MedicalRetrieval | Retrieval | ndcg_at_5 | 65.858 |
MTEB MedicalRetrieval | Retrieval | precision_at_1 | 57.8 |
MTEB MedicalRetrieval | Retrieval | precision_at_10 | 7.75 |
MTEB MedicalRetrieval | Retrieval | precision_at_100 | 0.919 |
MTEB MedicalRetrieval | Retrieval | precision_at_1000 | 0.099 |
MTEB MedicalRetrieval | Retrieval | precision_at_3 | 22.900000000000002 |
MTEB MedicalRetrieval | Retrieval | precision_at_5 | 14.540000000000001 |
MTEB MedicalRetrieval | Retrieval | recall_at_1 | 57.8 |
MTEB MedicalRetrieval | Retrieval | recall_at_10 | 77.5 |
MTEB MedicalRetrieval | Retrieval | recall_at_100 | 91.9 |
MTEB MedicalRetrieval | Retrieval | recall_at_1000 | 98.6 |
MTEB MedicalRetrieval | Retrieval | recall_at_3 | 68.7 |
MTEB MedicalRetrieval | Retrieval | recall_at_5 | 72.7 |
MTEB MedicalRetrieval | Retrieval | main_score | 67.415 |
MTEB T2Reranking | Reranking | map | 69.06615146698508 |
MTEB T2Reranking | Reranking | mrr | 79.7588755091294 |
MTEB T2Reranking | Reranking | main_score | 69.06615146698508 |
MTEB T2Retrieval | Retrieval | map_at_1 | 28.084999999999997 |
MTEB T2Retrieval | Retrieval | map_at_10 | 78.583 |
MTEB T2Retrieval | Retrieval | map_at_100 | 82.14399999999999 |
MTEB T2Retrieval | Retrieval | map_at_1000 | 82.204 |
MTEB T2Retrieval | Retrieval | map_at_3 | 55.422000000000004 |
MTEB T2Retrieval | Retrieval | map_at_5 | 67.973 |
MTEB T2Retrieval | Retrieval | mrr_at_1 | 91.014 |
MTEB T2Retrieval | Retrieval | mrr_at_10 | 93.381 |
MTEB T2Retrieval | Retrieval | mrr_at_100 | 93.45400000000001 |
MTEB T2Retrieval | Retrieval | mrr_at_1000 | 93.45599999999999 |
MTEB T2Retrieval | Retrieval | mrr_at_3 | 92.99300000000001 |
MTEB T2Retrieval | Retrieval | mrr_at_5 | 93.234 |
MTEB T2Retrieval | Retrieval | ndcg_at_1 | 91.014 |
MTEB T2Retrieval | Retrieval | ndcg_at_10 | 85.931 |
MTEB T2Retrieval | Retrieval | ndcg_at_100 | 89.31 |
MTEB T2Retrieval | Retrieval | ndcg_at_1000 | 89.869 |
MTEB T2Retrieval | Retrieval | ndcg_at_3 | 87.348 |
MTEB T2Retrieval | Retrieval | ndcg_at_5 | 85.929 |
MTEB T2Retrieval | Retrieval | precision_at_1 | 91.014 |
MTEB T2Retrieval | Retrieval | precision_at_10 | 42.495 |
MTEB T2Retrieval | Retrieval | precision_at_100 | 5.029999999999999 |
MTEB T2Retrieval | Retrieval | precision_at_1000 | 0.516 |
MTEB T2Retrieval | Retrieval | precision_at_3 | 76.248 |
MTEB T2Retrieval | Retrieval | precision_at_5 | 63.817 |
MTEB T2Retrieval | Retrieval | recall_at_1 | 28.084999999999997 |
MTEB T2Retrieval | Retrieval | recall_at_10 | 84.88 |
MTEB T2Retrieval | Retrieval | recall_at_100 | 95.902 |
MTEB T2Retrieval | Retrieval | recall_at_1000 | 98.699 |
MTEB T2Retrieval | Retrieval | recall_at_3 | 57.113 |
MTEB T2Retrieval | Retrieval | recall_at_5 | 71.251 |
MTEB T2Retrieval | Retrieval | main_score | 85.931 |
MTEB VideoRetrieval | Retrieval | map_at_1 | 66.4 |
MTEB VideoRetrieval | Retrieval | map_at_10 | 75.86 |
MTEB VideoRetrieval | Retrieval | map_at_100 | 76.185 |
MTEB VideoRetrieval | Retrieval | map_at_1000 | 76.188 |
MTEB VideoRetrieval | Retrieval | map_at_3 | 74.167 |
MTEB VideoRetrieval | Retrieval | map_at_5 | 75.187 |
MTEB VideoRetrieval | Retrieval | mrr_at_1 | 66.4 |
MTEB VideoRetrieval | Retrieval | mrr_at_10 | 75.86 |
MTEB VideoRetrieval | Retrieval | mrr_at_100 | 76.185 |
MTEB VideoRetrieval | Retrieval | mrr_at_1000 | 76.188 |
MTEB VideoRetrieval | Retrieval | mrr_at_3 | 74.167 |
MTEB VideoRetrieval | Retrieval | mrr_at_5 | 75.187 |
MTEB VideoRetrieval | Retrieval | ndcg_at_1 | 66.4 |
MTEB VideoRetrieval | Retrieval | ndcg_at_10 | 80.03099999999999 |
MTEB VideoRetrieval | Retrieval | ndcg_at_100 | 81.459 |
MTEB VideoRetrieval | Retrieval | ndcg_at_1000 | 81.527 |
MTEB VideoRetrieval | Retrieval | ndcg_at_3 | 76.621 |
MTEB VideoRetrieval | Retrieval | ndcg_at_5 | 78.446 |
MTEB VideoRetrieval | Retrieval | precision_at_1 | 66.4 |
MTEB VideoRetrieval | Retrieval | precision_at_10 | 9.29 |
MTEB VideoRetrieval | Retrieval | precision_at_100 | 0.992 |
MTEB VideoRetrieval | Retrieval | precision_at_1000 | 0.1 |
MTEB VideoRetrieval | Retrieval | precision_at_3 | 27.900000000000002 |
MTEB VideoRetrieval | Retrieval | precision_at_5 | 17.62 |
MTEB VideoRetrieval | Retrieval | recall_at_1 | 66.4 |
MTEB VideoRetrieval | Retrieval | recall_at_10 | 92.9 |
MTEB VideoRetrieval | Retrieval | recall_at_100 | 99.2 |
MTEB VideoRetrieval | Retrieval | recall_at_1000 | 99.7 |
MTEB VideoRetrieval | Retrieval | recall_at_3 | 83.7 |
MTEB VideoRetrieval | Retrieval | recall_at_5 | 88.1 |
MTEB VideoRetrieval | Retrieval | main_score | 80.03099999999999 |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98