Segformer B0 Crop Detection
S
Segformer B0 Crop Detection
由BigR-Oclock開發
基於nvidia/segformer-b0-finetuned-ade-512-512微調的農作物分割模型,適用於512x512分辨率的圖像分割任務
下載量 221
發布時間 : 3/31/2025
模型概述
該模型是針對農作物檢測優化的圖像分割模型,在BigR-Oclock/CropSegmentation數據集上微調,能夠準確識別圖像中的作物區域
模型特點
高精度作物識別
在評估集上達到0.95的作物準確率和0.475的平均交併比
輕量級架構
基於SegFormer-B0架構,適合資源受限環境部署
512x512分辨率支持
專為512x512分辨率圖像優化
模型能力
圖像分割
農作物識別
語義分割
使用案例
農業
農田作物監測
自動識別農田圖像中的作物區域
準確率95.09%
作物生長分析
通過分割結果分析作物覆蓋率和生長狀況
🚀 分割變換器B0作物檢測模型
本模型基於Transformer架構,是在nvidia/segformer-b0-finetuned-ade-512-512基礎上,針對BigR - Oclock/CropSegmentation數據集進行微調的圖像分割模型,可用於精準的作物分割檢測任務。
🚀 快速開始
該模型在評估集上取得了以下結果:
- 損失值:0.2364
- 平均交併比(Mean Iou):0.4754
- 平均準確率(Mean Accuracy):0.9509
- 總體準確率(Overall Accuracy):0.9509
- 背景準確率(Accuracy Background):nan
- 作物準確率(Accuracy Crop):0.9509
- 背景交併比(Iou Background):0.0
- 作物交併比(Iou Crop):0.9509
📚 詳細文檔
訓練和評估數據
更多信息待補充。
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率(learning_rate):6e - 05
- 訓練批次大小(train_batch_size):1
- 評估批次大小(eval_batch_size):1
- 隨機種子(seed):42
- 優化器(optimizer):使用
OptimizerNames.ADAMW_TORCH
,其中betas=(0.9, 0.999)
,epsilon = 1e - 08
,無額外優化器參數 - 學習率調度器類型(lr_scheduler_type):線性
- 訓練輪數(num_epochs):10
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 平均交併比 | 平均準確率 | 總體準確率 | 背景準確率 | 作物準確率 | 背景交併比 | 作物交併比 |
---|---|---|---|---|---|---|---|---|---|---|
0.5159 | 0.1092 | 50 | 0.3885 | 0.4099 | 0.8197 | 0.8197 | nan | 0.8197 | 0.0 | 0.8197 |
0.3496 | 0.2183 | 100 | 0.2894 | 0.4077 | 0.8155 | 0.8155 | nan | 0.8155 | 0.0 | 0.8155 |
0.3076 | 0.3275 | 150 | 0.2679 | 0.4386 | 0.8773 | 0.8773 | nan | 0.8773 | 0.0 | 0.8773 |
0.2953 | 0.4367 | 200 | 0.2906 | 0.4444 | 0.8888 | 0.8888 | nan | 0.8888 | 0.0 | 0.8888 |
0.2322 | 0.5459 | 250 | 0.2511 | 0.3949 | 0.7898 | 0.7898 | nan | 0.7898 | 0.0 | 0.7898 |
0.2256 | 0.6550 | 300 | 0.2468 | 0.4529 | 0.9058 | 0.9058 | nan | 0.9058 | 0.0 | 0.9058 |
0.2706 | 0.7642 | 350 | 0.1816 | 0.4332 | 0.8663 | 0.8663 | nan | 0.8663 | 0.0 | 0.8663 |
0.1979 | 0.8734 | 400 | 0.2390 | 0.4521 | 0.9043 | 0.9043 | nan | 0.9043 | 0.0 | 0.9043 |
0.2527 | 0.9825 | 450 | 0.2981 | 0.3835 | 0.7670 | 0.7670 | nan | 0.7670 | 0.0 | 0.7670 |
0.1658 | 1.0917 | 500 | 0.1473 | 0.4537 | 0.9073 | 0.9073 | nan | 0.9073 | 0.0 | 0.9073 |
0.1866 | 1.2009 | 550 | 0.2338 | 0.4246 | 0.8492 | 0.8492 | nan | 0.8492 | 0.0 | 0.8492 |
0.1665 | 1.3100 | 600 | 0.1739 | 0.4639 | 0.9278 | 0.9278 | nan | 0.9278 | 0.0 | 0.9278 |
0.1692 | 1.4192 | 650 | 0.1808 | 0.4511 | 0.9022 | 0.9022 | nan | 0.9022 | 0.0 | 0.9022 |
0.1803 | 1.5284 | 700 | 0.2468 | 0.4138 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 |
0.1722 | 1.6376 | 750 | 0.1914 | 0.4345 | 0.8691 | 0.8691 | nan | 0.8691 | 0.0 | 0.8691 |
0.1526 | 1.7467 | 800 | 0.2183 | 0.4396 | 0.8792 | 0.8792 | nan | 0.8792 | 0.0 | 0.8792 |
0.1409 | 1.8559 | 850 | 0.2273 | 0.4216 | 0.8433 | 0.8433 | nan | 0.8433 | 0.0 | 0.8433 |
0.169 | 1.9651 | 900 | 0.2728 | 0.4036 | 0.8072 | 0.8072 | nan | 0.8072 | 0.0 | 0.8072 |
0.1302 | 2.0742 | 950 | 0.2208 | 0.4452 | 0.8903 | 0.8903 | nan | 0.8903 | 0.0 | 0.8903 |
0.1268 | 2.1834 | 1000 | 0.2283 | 0.4253 | 0.8507 | 0.8507 | nan | 0.8507 | 0.0 | 0.8507 |
0.1271 | 2.2926 | 1050 | 0.1984 | 0.4506 | 0.9012 | 0.9012 | nan | 0.9012 | 0.0 | 0.9012 |
0.1321 | 2.4017 | 1100 | 0.1618 | 0.4560 | 0.9120 | 0.9120 | nan | 0.9120 | 0.0 | 0.9120 |
0.1345 | 2.5109 | 1150 | 0.1725 | 0.4659 | 0.9318 | 0.9318 | nan | 0.9318 | 0.0 | 0.9318 |
0.1053 | 2.6201 | 1200 | 0.1550 | 0.4574 | 0.9148 | 0.9148 | nan | 0.9148 | 0.0 | 0.9148 |
0.1245 | 2.7293 | 1250 | 0.1696 | 0.4816 | 0.9632 | 0.9632 | nan | 0.9632 | 0.0 | 0.9632 |
0.1104 | 2.8384 | 1300 | 0.2519 | 0.4330 | 0.8661 | 0.8661 | nan | 0.8661 | 0.0 | 0.8661 |
0.1105 | 2.9476 | 1350 | 0.1830 | 0.4655 | 0.9310 | 0.9310 | nan | 0.9310 | 0.0 | 0.9310 |
0.1215 | 3.0568 | 1400 | 0.2102 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0995 | 3.1659 | 1450 | 0.2363 | 0.4478 | 0.8957 | 0.8957 | nan | 0.8957 | 0.0 | 0.8957 |
0.1115 | 3.2751 | 1500 | 0.1730 | 0.4717 | 0.9435 | 0.9435 | nan | 0.9435 | 0.0 | 0.9435 |
0.0998 | 3.3843 | 1550 | 0.2067 | 0.4535 | 0.9070 | 0.9070 | nan | 0.9070 | 0.0 | 0.9070 |
0.0963 | 3.4934 | 1600 | 0.2127 | 0.4701 | 0.9401 | 0.9401 | nan | 0.9401 | 0.0 | 0.9401 |
0.0985 | 3.6026 | 1650 | 0.1695 | 0.4686 | 0.9371 | 0.9371 | nan | 0.9371 | 0.0 | 0.9371 |
0.0822 | 3.7118 | 1700 | 0.2069 | 0.4494 | 0.8988 | 0.8988 | nan | 0.8988 | 0.0 | 0.8988 |
0.1065 | 3.8210 | 1750 | 0.2140 | 0.4590 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0849 | 3.9301 | 1800 | 0.2108 | 0.4592 | 0.9183 | 0.9183 | nan | 0.9183 | 0.0 | 0.9183 |
0.0917 | 4.0393 | 1850 | 0.1940 | 0.4668 | 0.9336 | 0.9336 | nan | 0.9336 | 0.0 | 0.9336 |
0.0793 | 4.1485 | 1900 | 0.1795 | 0.4649 | 0.9298 | 0.9298 | nan | 0.9298 | 0.0 | 0.9298 |
0.0851 | 4.2576 | 1950 | 0.2118 | 0.4462 | 0.8924 | 0.8924 | nan | 0.8924 | 0.0 | 0.8924 |
0.0951 | 4.3668 | 2000 | 0.2864 | 0.4212 | 0.8424 | 0.8424 | nan | 0.8424 | 0.0 | 0.8424 |
0.0805 | 4.4760 | 2050 | 0.1498 | 0.4683 | 0.9366 | 0.9366 | nan | 0.9366 | 0.0 | 0.9366 |
0.085 | 4.5852 | 2100 | 0.2223 | 0.4514 | 0.9028 | 0.9028 | nan | 0.9028 | 0.0 | 0.9028 |
0.0736 | 4.6943 | 2150 | 0.1860 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 |
0.079 | 4.8035 | 2200 | 0.2069 | 0.4653 | 0.9305 | 0.9305 | nan | 0.9305 | 0.0 | 0.9305 |
0.0701 | 4.9127 | 2250 | 0.1728 | 0.4724 | 0.9448 | 0.9448 | nan | 0.9448 | 0.0 | 0.9448 |
0.0994 | 5.0218 | 2300 | 0.2480 | 0.4602 | 0.9204 | 0.9204 | nan | 0.9204 | 0.0 | 0.9204 |
0.0749 | 5.1310 | 2350 | 0.1951 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0691 | 5.2402 | 2400 | 0.2103 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.0653 | 5.3493 | 2450 | 0.1794 | 0.4570 | 0.9140 | 0.9140 | nan | 0.9140 | 0.0 | 0.9140 |
0.0621 | 5.4585 | 2500 | 0.1971 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.073 | 5.5677 | 2550 | 0.1905 | 0.4589 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0658 | 5.6769 | 2600 | 0.2289 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0727 | 5.7860 | 2650 | 0.1976 | 0.4769 | 0.9539 | 0.9539 | nan | 0.9539 | 0.0 | 0.9539 |
0.0756 | 5.8952 | 2700 | 0.1724 | 0.4687 | 0.9373 | 0.9373 | nan | 0.9373 | 0.0 | 0.9373 |
0.0756 | 6.0044 | 2750 | 0.1867 | 0.4566 | 0.9133 | 0.9133 | nan | 0.9133 | 0.0 | 0.9133 |
0.0695 | 6.1135 | 2800 | 0.1944 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.0683 | 6.2227 | 2850 | 0.2176 | 0.4744 | 0.9488 | 0.9488 | nan | 0.9488 | 0.0 | 0.9488 |
0.061 | 6.3319 | 2900 | 0.1959 | 0.4663 | 0.9326 | 0.9326 | nan | 0.9326 | 0.0 | 0.9326 |
0.06 | 6.4410 | 2950 | 0.2090 | 0.4615 | 0.9230 | 0.9230 | nan | 0.9230 | 0.0 | 0.9230 |
0.0537 | 6.5502 | 3000 | 0.2119 | 0.4735 | 0.9469 | 0.9469 | nan | 0.9469 | 0.0 | 0.9469 |
0.0529 | 6.6594 | 3050 | 0.2043 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.08 | 6.7686 | 3100 | 0.2130 | 0.4566 | 0.9132 | 0.9132 | nan | 0.9132 | 0.0 | 0.9132 |
0.0632 | 6.8777 | 3150 | 0.1993 | 0.4692 | 0.9384 | 0.9384 | nan | 0.9384 | 0.0 | 0.9384 |
0.0641 | 6.9869 | 3200 | 0.2408 | 0.4454 | 0.8909 | 0.8909 | nan | 0.8909 | 0.0 | 0.8909 |
0.0517 | 7.0961 | 3250 | 0.1836 | 0.4770 | 0.9540 | 0.9540 | nan | 0.9540 | 0.0 | 0.9540 |
0.0584 | 7.2052 | 3300 | 0.1983 | 0.4643 | 0.9285 | 0.9285 | nan | 0.9285 | 0.0 | 0.9285 |
0.0559 | 7.3144 | 3350 | 0.2036 | 0.4609 | 0.9217 | 0.9217 | nan | 0.9217 | 0.0 | 0.9217 |
0.0621 | 7.4236 | 3400 | 0.2058 | 0.4764 | 0.9528 | 0.9528 | nan | 0.9528 | 0.0 | 0.9528 |
0.0641 | 7.5328 | 3450 | 0.2136 | 0.4657 | 0.9314 | 0.9314 | nan | 0.9314 | 0.0 | 0.9314 |
0.0481 | 7.6419 | 3500 | 0.1938 | 0.4699 | 0.9398 | 0.9398 | nan | 0.9398 | 0.0 | 0.9398 |
0.061 | 7.7511 | 3550 | 0.1979 | 0.4772 | 0.9545 | 0.9545 | nan | 0.9545 | 0.0 | 0.9545 |
0.0561 | 7.8603 | 3600 | 0.2271 | 0.4691 | 0.9382 | 0.9382 | nan | 0.9382 | 0.0 | 0.9382 |
0.0629 | 7.9694 | 3650 | 0.2220 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0625 | 8.0786 | 3700 | 0.2422 | 0.4547 | 0.9094 | 0.9094 | nan | 0.9094 | 0.0 | 0.9094 |
0.0479 | 8.1878 | 3750 | 0.2360 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0471 | 8.2969 | 3800 | 0.1981 | 0.4713 | 0.9427 | 0.9427 | nan | 0.9427 | 0.0 | 0.9427 |
0.0612 | 8.4061 | 3850 | 0.2427 | 0.4740 | 0.9479 | 0.9479 | nan | 0.9479 | 0.0 | 0.9479 |
0.0526 | 8.5153 | 3900 | 0.2516 | 0.4716 | 0.9432 | 0.9432 | nan | 0.9432 | 0.0 | 0.9432 |
0.0573 | 8.6245 | 3950 | 0.2240 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0532 | 8.7336 | 4000 | 0.2539 | 0.4830 | 0.9659 | 0.9659 | nan | 0.9659 | 0.0 | 0.9659 |
0.0537 | 8.8428 | 4050 | 0.2202 | 0.4633 | 0.9267 | 0.9267 | nan | 0.9267 | 0.0 | 0.9267 |
0.0481 | 8.9520 | 4100 | 0.2155 | 0.4617 | 0.9234 | 0.9234 | nan | 0.9234 | 0.0 | 0.9234 |
0.0461 | 9.0611 | 4150 | 0.2217 | 0.4590 | 0.9181 | 0.9181 | nan | 0.9181 | 0.0 | 0.9181 |
0.0486 | 9.1703 | 4200 | 0.2748 | 0.4420 | 0.8841 | 0.8841 | nan | 0.8841 | 0.0 | 0.8841 |
0.0485 | 9.2795 | 4250 | 0.2172 | 0.4680 | 0.9360 | 0.9360 | nan | 0.9360 | 0.0 | 0.9360 |
0.0559 | 9.3886 | 4300 | 0.2285 | 0.4717 | 0.9434 | 0.9434 | nan | 0.9434 | 0.0 | 0.9434 |
0.0434 | 9.4978 | 4350 | 0.2288 | 0.4749 | 0.9498 | 0.9498 | nan | 0.9498 | 0.0 | 0.9498 |
0.0522 | 9.6070 | 4400 | 0.2420 | 0.4609 | 0.9218 | 0.9218 | nan | 0.9218 | 0.0 | 0.9218 |
0.0453 | 9.7162 | 4450 | 0.2370 | 0.4741 | 0.9481 | 0.9481 | nan | 0.9481 | 0.0 | 0.9481 |
0.0538 | 9.8253 | 4500 | 0.2464 | 0.4565 | 0.9130 | 0.9130 | nan | 0.9130 | 0.0 | 0.9130 |
0.0513 | 9.9345 | 4550 | 0.2364 | 0.4754 | 0.9509 | 0.9509 | nan | 0.9509 | 0.0 | 0.9509 |
框架版本
- Transformers 4.50.3
- Pytorch 2.6.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1
📄 許可證
許可證類型:其他
🔧 技術細節
模型描述
更多信息待補充。
預期用途和限制
更多信息待補充。
信息表格
屬性 | 詳情 |
---|---|
模型類型 | 分割變換器B0作物檢測模型 |
基礎模型 | nvidia/segformer-b0-finetuned-ade-512-512 |
標籤 | 視覺、圖像分割、由訓練器生成 |
模型索引名稱 | segformer-b0-crop-detection |
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一種基於文本與圖像提示的圖像分割模型,支持零樣本和單樣本圖像分割任務。
圖像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先進的背景移除模型,專為高效分離各類圖像的前景與背景而設計,適用於非商業用途。
圖像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI開發的最新背景移除模型,能有效分離各類圖像的前景與背景,適合大規模商業內容創作場景。
圖像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基於ATR數據集微調的SegFormer模型,用於服裝和人體分割
圖像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一個能夠通過輸入提示(如點或框)生成高質量對象掩碼的視覺模型,支持零樣本分割任務
圖像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一個用於高分辨率二分圖像分割的深度學習模型,通過雙邊參考網絡實現精確的圖像分割。
圖像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一種基於Transformer的語義分割模型,在ADE20K數據集上進行了微調,適用於圖像分割任務。
圖像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一個能夠通過輸入提示點或邊界框生成高質量物體掩膜的視覺模型,具備零樣本遷移能力。
圖像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基於nvidia/mit-b5微調的語義分割模型,用於面部解析任務
圖像分割
Transformers 英語

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一個能夠根據輸入提示生成高質量對象掩碼的視覺模型,支持零樣本遷移到新任務
圖像分割
Transformers 其他

S
facebook
324.78k
163
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98