Segformer B0 Crop Detection
S
Segformer B0 Crop Detection
Developed by BigR-Oclock
A crop segmentation model fine-tuned from nvidia/segformer-b0-finetuned-ade-512-512, suitable for 512x512 resolution image segmentation tasks
Downloads 221
Release Time : 3/31/2025
Model Overview
This model is an image segmentation model optimized for crop detection, fine-tuned on the BigR-Oclock/CropSegmentation dataset, capable of accurately identifying crop regions in images
Model Features
High-precision crop recognition
Achieves 0.95 crop accuracy and 0.475 mean IoU on the evaluation set
Lightweight architecture
Based on SegFormer-B0 architecture, suitable for deployment in resource-constrained environments
512x512 resolution support
Optimized for 512x512 resolution images
Model Capabilities
Image segmentation
Crop recognition
Semantic segmentation
Use Cases
Agriculture
Farmland crop monitoring
Automatically identify crop regions in farmland images
95.09% accuracy
Crop growth analysis
Analyze crop coverage and growth conditions through segmentation results
đ segformer-b0-crop-detection
This model is a fine - tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the BigR-Oclock/CropSegmentation dataset. It is designed for image segmentation tasks, specifically crop detection.
đ Quick Start
This model is ready to use for image segmentation tasks, especially for crop detection. You can load it and start making predictions with appropriate libraries.
đ Documentation
Model description
This model is a fine - tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the BigR-Oclock/CropSegmentation dataset. It achieves the following results on the evaluation set:
- Loss: 0.2364
- Mean Iou: 0.4754
- Mean Accuracy: 0.9509
- Overall Accuracy: 0.9509
- Accuracy Background: nan
- Accuracy Crop: 0.9509
- Iou Background: 0.0
- Iou Crop: 0.9509
Training and evaluation data
More information needed
Intended uses & limitations
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crop | Iou Background | Iou Crop |
---|---|---|---|---|---|---|---|---|---|---|
0.5159 | 0.1092 | 50 | 0.3885 | 0.4099 | 0.8197 | 0.8197 | nan | 0.8197 | 0.0 | 0.8197 |
0.3496 | 0.2183 | 100 | 0.2894 | 0.4077 | 0.8155 | 0.8155 | nan | 0.8155 | 0.0 | 0.8155 |
0.3076 | 0.3275 | 150 | 0.2679 | 0.4386 | 0.8773 | 0.8773 | nan | 0.8773 | 0.0 | 0.8773 |
0.2953 | 0.4367 | 200 | 0.2906 | 0.4444 | 0.8888 | 0.8888 | nan | 0.8888 | 0.0 | 0.8888 |
0.2322 | 0.5459 | 250 | 0.2511 | 0.3949 | 0.7898 | 0.7898 | nan | 0.7898 | 0.0 | 0.7898 |
0.2256 | 0.6550 | 300 | 0.2468 | 0.4529 | 0.9058 | 0.9058 | nan | 0.9058 | 0.0 | 0.9058 |
0.2706 | 0.7642 | 350 | 0.1816 | 0.4332 | 0.8663 | 0.8663 | nan | 0.8663 | 0.0 | 0.8663 |
0.1979 | 0.8734 | 400 | 0.2390 | 0.4521 | 0.9043 | 0.9043 | nan | 0.9043 | 0.0 | 0.9043 |
0.2527 | 0.9825 | 450 | 0.2981 | 0.3835 | 0.7670 | 0.7670 | nan | 0.7670 | 0.0 | 0.7670 |
0.1658 | 1.0917 | 500 | 0.1473 | 0.4537 | 0.9073 | 0.9073 | nan | 0.9073 | 0.0 | 0.9073 |
0.1866 | 1.2009 | 550 | 0.2338 | 0.4246 | 0.8492 | 0.8492 | nan | 0.8492 | 0.0 | 0.8492 |
0.1665 | 1.3100 | 600 | 0.1739 | 0.4639 | 0.9278 | 0.9278 | nan | 0.9278 | 0.0 | 0.9278 |
0.1692 | 1.4192 | 650 | 0.1808 | 0.4511 | 0.9022 | 0.9022 | nan | 0.9022 | 0.0 | 0.9022 |
0.1803 | 1.5284 | 700 | 0.2468 | 0.4138 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 |
0.1722 | 1.6376 | 750 | 0.1914 | 0.4345 | 0.8691 | 0.8691 | nan | 0.8691 | 0.0 | 0.8691 |
0.1526 | 1.7467 | 800 | 0.2183 | 0.4396 | 0.8792 | 0.8792 | nan | 0.8792 | 0.0 | 0.8792 |
0.1409 | 1.8559 | 850 | 0.2273 | 0.4216 | 0.8433 | 0.8433 | nan | 0.8433 | 0.0 | 0.8433 |
0.169 | 1.9651 | 900 | 0.2728 | 0.4036 | 0.8072 | 0.8072 | nan | 0.8072 | 0.0 | 0.8072 |
0.1302 | 2.0742 | 950 | 0.2208 | 0.4452 | 0.8903 | 0.8903 | nan | 0.8903 | 0.0 | 0.8903 |
0.1268 | 2.1834 | 1000 | 0.2283 | 0.4253 | 0.8507 | 0.8507 | nan | 0.8507 | 0.0 | 0.8507 |
0.1271 | 2.2926 | 1050 | 0.1984 | 0.4506 | 0.9012 | 0.9012 | nan | 0.9012 | 0.0 | 0.9012 |
0.1321 | 2.4017 | 1100 | 0.1618 | 0.4560 | 0.9120 | 0.9120 | nan | 0.9120 | 0.0 | 0.9120 |
0.1345 | 2.5109 | 1150 | 0.1725 | 0.4659 | 0.9318 | 0.9318 | nan | 0.9318 | 0.0 | 0.9318 |
0.1053 | 2.6201 | 1200 | 0.1550 | 0.4574 | 0.9148 | 0.9148 | nan | 0.9148 | 0.0 | 0.9148 |
0.1245 | 2.7293 | 1250 | 0.1696 | 0.4816 | 0.9632 | 0.9632 | nan | 0.9632 | 0.0 | 0.9632 |
0.1104 | 2.8384 | 1300 | 0.2519 | 0.4330 | 0.8661 | 0.8661 | nan | 0.8661 | 0.0 | 0.8661 |
0.1105 | 2.9476 | 1350 | 0.1830 | 0.4655 | 0.9310 | 0.9310 | nan | 0.9310 | 0.0 | 0.9310 |
0.1215 | 3.0568 | 1400 | 0.2102 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0995 | 3.1659 | 1450 | 0.2363 | 0.4478 | 0.8957 | 0.8957 | nan | 0.8957 | 0.0 | 0.8957 |
0.1115 | 3.2751 | 1500 | 0.1730 | 0.4717 | 0.9435 | 0.9435 | nan | 0.9435 | 0.0 | 0.9435 |
0.0998 | 3.3843 | 1550 | 0.2067 | 0.4535 | 0.9070 | 0.9070 | nan | 0.9070 | 0.0 | 0.9070 |
0.0963 | 3.4934 | 1600 | 0.2127 | 0.4701 | 0.9401 | 0.9401 | nan | 0.9401 | 0.0 | 0.9401 |
0.0985 | 3.6026 | 1650 | 0.1695 | 0.4686 | 0.9371 | 0.9371 | nan | 0.9371 | 0.0 | 0.9371 |
0.0822 | 3.7118 | 1700 | 0.2069 | 0.4494 | 0.8988 | 0.8988 | nan | 0.8988 | 0.0 | 0.8988 |
0.1065 | 3.8210 | 1750 | 0.2140 | 0.4590 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0849 | 3.9301 | 1800 | 0.2108 | 0.4592 | 0.9183 | 0.9183 | nan | 0.9183 | 0.0 | 0.9183 |
0.0917 | 4.0393 | 1850 | 0.1940 | 0.4668 | 0.9336 | 0.9336 | nan | 0.9336 | 0.0 | 0.9336 |
0.0793 | 4.1485 | 1900 | 0.1795 | 0.4649 | 0.9298 | 0.9298 | nan | 0.9298 | 0.0 | 0.9298 |
0.0851 | 4.2576 | 1950 | 0.2118 | 0.4462 | 0.8924 | 0.8924 | nan | 0.8924 | 0.0 | 0.8924 |
0.0951 | 4.3668 | 2000 | 0.2864 | 0.4212 | 0.8424 | 0.8424 | nan | 0.8424 | 0.0 | 0.8424 |
0.0805 | 4.4760 | 2050 | 0.1498 | 0.4683 | 0.9366 | 0.9366 | nan | 0.9366 | 0.0 | 0.9366 |
0.085 | 4.5852 | 2100 | 0.2223 | 0.4514 | 0.9028 | 0.9028 | nan | 0.9028 | 0.0 | 0.9028 |
0.0736 | 4.6943 | 2150 | 0.1860 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 |
0.079 | 4.8035 | 2200 | 0.2069 | 0.4653 | 0.9305 | 0.9305 | nan | 0.9305 | 0.0 | 0.9305 |
0.0701 | 4.9127 | 2250 | 0.1728 | 0.4724 | 0.9448 | 0.9448 | nan | 0.9448 | 0.0 | 0.9448 |
0.0994 | 5.0218 | 2300 | 0.2480 | 0.4602 | 0.9204 | 0.9204 | nan | 0.9204 | 0.0 | 0.9204 |
0.0749 | 5.1310 | 2350 | 0.1951 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0691 | 5.2402 | 2400 | 0.2103 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.0653 | 5.3493 | 2450 | 0.1794 | 0.4570 | 0.9140 | 0.9140 | nan | 0.9140 | 0.0 | 0.9140 |
0.0621 | 5.4585 | 2500 | 0.1971 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.073 | 5.5677 | 2550 | 0.1905 | 0.4589 | 0.9179 | 0.9179 | nan | 0.9179 | 0.0 | 0.9179 |
0.0658 | 5.6769 | 2600 | 0.2289 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0727 | 5.7860 | 2650 | 0.1976 | 0.4769 | 0.9539 | 0.9539 | nan | 0.9539 | 0.0 | 0.9539 |
0.0756 | 5.8952 | 2700 | 0.1724 | 0.4687 | 0.9373 | 0.9373 | nan | 0.9373 | 0.0 | 0.9373 |
0.0756 | 6.0044 | 2750 | 0.1867 | 0.4566 | 0.9133 | 0.9133 | nan | 0.9133 | 0.0 | 0.9133 |
0.0695 | 6.1135 | 2800 | 0.1944 | 0.4715 | 0.9430 | 0.9430 | nan | 0.9430 | 0.0 | 0.9430 |
0.0683 | 6.2227 | 2850 | 0.2176 | 0.4744 | 0.9488 | 0.9488 | nan | 0.9488 | 0.0 | 0.9488 |
0.061 | 6.3319 | 2900 | 0.1959 | 0.4663 | 0.9326 | 0.9326 | nan | 0.9326 | 0.0 | 0.9326 |
0.06 | 6.4410 | 2950 | 0.2090 | 0.4615 | 0.9230 | 0.9230 | nan | 0.9230 | 0.0 | 0.9230 |
0.0537 | 6.5502 | 3000 | 0.2119 | 0.4735 | 0.9469 | 0.9469 | nan | 0.9469 | 0.0 | 0.9469 |
0.0529 | 6.6594 | 3050 | 0.2043 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
0.08 | 6.7686 | 3100 | 0.2130 | 0.4566 | 0.9132 | 0.9132 | nan | 0.9132 | 0.0 | 0.9132 |
0.0632 | 6.8777 | 3150 | 0.1993 | 0.4692 | 0.9384 | 0.9384 | nan | 0.9384 | 0.0 | 0.9384 |
0.0641 | 6.9869 | 3200 | 0.2408 | 0.4454 | 0.8909 | 0.8909 | nan | 0.8909 | 0.0 | 0.8909 |
0.0517 | 7.0961 | 3250 | 0.1836 | 0.4770 | 0.9540 | 0.9540 | nan | 0.9540 | 0.0 | 0.9540 |
0.0584 | 7.2052 | 3300 | 0.1983 | 0.4643 | 0.9285 | 0.9285 | nan | 0.9285 | 0.0 | 0.9285 |
0.0559 | 7.3144 | 3350 | 0.2036 | 0.4609 | 0.9217 | 0.9217 | nan | 0.9217 | 0.0 | 0.9217 |
0.0621 | 7.4236 | 3400 | 0.2058 | 0.4764 | 0.9528 | 0.9528 | nan | 0.9528 | 0.0 | 0.9528 |
0.0641 | 7.5328 | 3450 | 0.2136 | 0.4657 | 0.9314 | 0.9314 | nan | 0.9314 | 0.0 | 0.9314 |
0.0481 | 7.6419 | 3500 | 0.1938 | 0.4699 | 0.9398 | 0.9398 | nan | 0.9398 | 0.0 | 0.9398 |
0.061 | 7.7511 | 3550 | 0.1979 | 0.4772 | 0.9545 | 0.9545 | nan | 0.9545 | 0.0 | 0.9545 |
0.0561 | 7.8603 | 3600 | 0.2271 | 0.4691 | 0.9382 | 0.9382 | nan | 0.9382 | 0.0 | 0.9382 |
0.0629 | 7.9694 | 3650 | 0.2220 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
0.0625 | 8.0786 | 3700 | 0.2422 | 0.4547 | 0.9094 | 0.9094 | nan | 0.9094 | 0.0 | 0.9094 |
0.0479 | 8.1878 | 3750 | 0.2360 | 0.4791 | 0.9581 | 0.9581 | nan | 0.9581 | 0.0 | 0.9581 |
0.0471 | 8.2969 | 3800 | 0.1981 | 0.4713 | 0.9427 | 0.9427 | nan | 0.9427 | 0.0 | 0.9427 |
0.0612 | 8.4061 | 3850 | 0.2427 | 0.4740 | 0.9479 | 0.9479 | nan | 0.9479 | 0.0 | 0.9479 |
0.0526 | 8.5153 | 3900 | 0.2516 | 0.4716 | 0.9432 | 0.9432 | nan | 0.9432 | 0.0 | 0.9432 |
0.0573 | 8.6245 | 3950 | 0.2240 | 0.4663 | 0.9325 | 0.9325 | nan | 0.9325 | 0.0 | 0.9325 |
0.0532 | 8.7336 | 4000 | 0.2539 | 0.4830 | 0.9659 | 0.9659 | nan | 0.9659 | 0.0 | 0.9659 |
0.0537 | 8.8428 | 4050 | 0.2202 | 0.4633 | 0.9267 | 0.9267 | nan | 0.9267 | 0.0 | 0.9267 |
0.0481 | 8.9520 | 4100 | 0.2155 | 0.4617 | 0.9234 | 0.9234 | nan | 0.9234 | 0.0 | 0.9234 |
0.0461 | 9.0611 | 4150 | 0.2217 | 0.4590 | 0.9181 | 0.9181 | nan | 0.9181 | 0.0 | 0.9181 |
0.0486 | 9.1703 | 4200 | 0.2748 | 0.4420 | 0.8841 | 0.8841 | nan | 0.8841 | 0.0 | 0.8841 |
0.0485 | 9.2795 | 4250 | 0.2172 | 0.4680 | 0.9360 | 0.9360 | nan | 0.9360 | 0.0 | 0.9360 |
0.0559 | 9.3886 | 4300 | 0.2285 | 0.4717 | 0.9434 | 0.9434 | nan | 0.9434 | 0.0 | 0.9434 |
0.0434 | 9.4978 | 4350 | 0.2288 | 0.4749 | 0.9498 | 0.9498 | nan | 0.9498 | 0.0 | 0.9498 |
0.0522 | 9.6070 | 4400 | 0.2420 | 0.4609 | 0.9218 | 0.9218 | nan | 0.9218 | 0.0 | 0.9218 |
0.0453 | 9.7162 | 4450 | 0.2370 | 0.4741 | 0.9481 | 0.9481 | nan | 0.9481 | 0.0 | 0.9481 |
0.0538 | 9.8253 | 4500 | 0.2464 | 0.4565 | 0.9130 | 0.9130 | nan | 0.9130 | 0.0 | 0.9130 |
0.0513 | 9.9345 | 4550 | 0.2364 | 0.4754 | 0.9509 | 0.9509 | nan | 0.9509 | 0.0 | 0.9509 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1
đ License
This model is under the "other" license.
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg is an image segmentation model based on text and image prompts, supporting zero-shot and one-shot image segmentation tasks.
Image Segmentation
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
Other
BRIA RMBG v1.4 is an advanced background removal model designed for efficiently separating foreground and background in various types of images, suitable for non-commercial use.
Image Segmentation
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
Other
The latest background removal model developed by BRIA AI, capable of effectively separating foreground and background in various images, suitable for large-scale commercial content creation scenarios.
Image Segmentation
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
SegFormer model fine-tuned on ATR dataset for clothing and human segmentation
Image Segmentation
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM is a vision model capable of generating high-quality object masks from input prompts (such as points or boxes), supporting zero-shot segmentation tasks
Image Segmentation
Transformers Other

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet is a deep learning model for high-resolution binary image segmentation, which achieves accurate image segmentation through a bilateral reference network.
Image Segmentation
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
Other
SegFormer is a Transformer-based semantic segmentation model fine-tuned on the ADE20K dataset, suitable for image segmentation tasks.
Image Segmentation
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM is a visual model capable of generating high-quality object masks from input points or bounding boxes, with zero-shot transfer capability.
Image Segmentation
Transformers Other

S
facebook
455.43k
28
Face Parsing
Semantic segmentation model fine-tuned from nvidia/mit-b5 for face parsing tasks
Image Segmentation
Transformers English

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM is a vision model capable of generating high-quality object masks based on input prompts, supporting zero-shot transfer to new tasks
Image Segmentation
Transformers Other

S
facebook
324.78k
163
Featured Recommended AI Models
Š 2025AIbase