🚀 貨車分類模型
本模型是圖像分類領域的重要工具,它基於微調的方式優化了圖像分類效果,在貨車分類任務上展現出高準確率,為相關領域的圖像分析提供了可靠支持。
🚀 快速開始
本模型是 microsoft/swin-tiny-patch4-window7-224 在 imagefolder
數據集上的微調版本。它在評估集上取得了以下結果:
🔧 技術細節
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:5e-05
- 訓練批次大小:32
- 評估批次大小:32
- 隨機種子:42
- 梯度累積步數:4
- 總訓練批次大小:128
- 優化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 學習率調度器類型:線性
- 學習率調度器預熱比例:0.1
- 訓練輪數:60
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
準確率 |
無記錄 |
0.91 |
5 |
0.1787 |
0.9733 |
無記錄 |
1.91 |
10 |
0.1787 |
0.9733 |
無記錄 |
2.91 |
15 |
0.1787 |
0.9733 |
0.3799 |
3.91 |
20 |
0.1787 |
0.9733 |
0.3799 |
4.91 |
25 |
0.1787 |
0.9733 |
0.3799 |
5.91 |
30 |
0.1787 |
0.9733 |
0.3799 |
6.91 |
35 |
0.1787 |
0.9733 |
0.3648 |
7.91 |
40 |
0.1787 |
0.9733 |
0.3648 |
8.91 |
45 |
0.1787 |
0.9733 |
0.3648 |
9.91 |
50 |
0.1787 |
0.9733 |
0.3648 |
10.91 |
55 |
0.1787 |
0.9733 |
0.3954 |
11.91 |
60 |
0.1787 |
0.9733 |
0.3954 |
12.91 |
65 |
0.1787 |
0.9733 |
0.3954 |
13.91 |
70 |
0.1787 |
0.9733 |
0.3954 |
14.91 |
75 |
0.1787 |
0.9733 |
0.3926 |
15.91 |
80 |
0.1787 |
0.9733 |
0.3926 |
16.91 |
85 |
0.1787 |
0.9733 |
0.3926 |
17.91 |
90 |
0.1787 |
0.9733 |
0.3926 |
18.91 |
95 |
0.1787 |
0.9733 |
0.3801 |
19.91 |
100 |
0.1787 |
0.9733 |
0.3801 |
20.91 |
105 |
0.1787 |
0.9733 |
0.3801 |
21.91 |
110 |
0.1787 |
0.9733 |
0.3801 |
22.91 |
115 |
0.1787 |
0.9733 |
0.3815 |
23.91 |
120 |
0.1787 |
0.9733 |
0.3815 |
24.91 |
125 |
0.1787 |
0.9733 |
0.3815 |
25.91 |
130 |
0.1787 |
0.9733 |
0.3815 |
26.91 |
135 |
0.1787 |
0.9733 |
0.3955 |
27.91 |
140 |
0.1787 |
0.9733 |
0.3955 |
28.91 |
145 |
0.1787 |
0.9733 |
0.3955 |
29.91 |
150 |
0.1787 |
0.9733 |
0.3955 |
30.91 |
155 |
0.1787 |
0.9733 |
0.3854 |
31.91 |
160 |
0.1787 |
0.9733 |
0.3854 |
32.91 |
165 |
0.1787 |
0.9733 |
0.3854 |
33.91 |
170 |
0.1787 |
0.9733 |
0.3854 |
34.91 |
175 |
0.1787 |
0.9733 |
0.3949 |
35.91 |
180 |
0.1787 |
0.9733 |
0.3949 |
36.91 |
185 |
0.1787 |
0.9733 |
0.3949 |
37.91 |
190 |
0.1787 |
0.9733 |
0.3949 |
38.91 |
195 |
0.1787 |
0.9733 |
0.423 |
39.91 |
200 |
0.1787 |
0.9733 |
0.423 |
40.91 |
205 |
0.1787 |
0.9733 |
0.423 |
41.91 |
210 |
0.1787 |
0.9733 |
0.423 |
42.91 |
215 |
0.1787 |
0.9733 |
0.3761 |
43.91 |
220 |
0.1787 |
0.9733 |
0.3761 |
44.91 |
225 |
0.1787 |
0.9733 |
0.3761 |
45.91 |
230 |
0.1787 |
0.9733 |
0.3761 |
46.91 |
235 |
0.1787 |
0.9733 |
0.3673 |
47.91 |
240 |
0.1787 |
0.9733 |
0.3673 |
48.91 |
245 |
0.1787 |
0.9733 |
0.3673 |
49.91 |
250 |
0.1787 |
0.9733 |
0.3673 |
50.91 |
255 |
0.1787 |
0.9733 |
0.3639 |
51.91 |
260 |
0.1787 |
0.9733 |
0.3639 |
52.91 |
265 |
0.1787 |
0.9733 |
0.3639 |
53.91 |
270 |
0.1787 |
0.9733 |
0.3639 |
54.91 |
275 |
0.1787 |
0.9733 |
0.4031 |
55.91 |
280 |
0.1787 |
0.9733 |
0.4031 |
56.91 |
285 |
0.1787 |
0.9733 |
0.4031 |
57.91 |
290 |
0.1787 |
0.9733 |
0.4031 |
58.91 |
295 |
0.1787 |
0.9733 |
0.3787 |
59.91 |
300 |
0.1787 |
0.9733 |
框架版本
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
📄 許可證
本模型採用 Apache-2.0 許可證。
模型信息表格
屬性 |
詳情 |
模型類型 |
貨車分類模型 |
訓練數據 |
imagefolder 數據集 |
評估指標 |
準確率 |