🚀 货车分类模型
本模型是图像分类领域的重要工具,它基于微调的方式优化了图像分类效果,在货车分类任务上展现出高准确率,为相关领域的图像分析提供了可靠支持。
🚀 快速开始
本模型是 microsoft/swin-tiny-patch4-window7-224 在 imagefolder
数据集上的微调版本。它在评估集上取得了以下结果:
🔧 技术细节
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e-05
- 训练批次大小:32
- 评估批次大小:32
- 随机种子:42
- 梯度累积步数:4
- 总训练批次大小:128
- 优化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 学习率调度器类型:线性
- 学习率调度器预热比例:0.1
- 训练轮数:60
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
准确率 |
无记录 |
0.91 |
5 |
0.1787 |
0.9733 |
无记录 |
1.91 |
10 |
0.1787 |
0.9733 |
无记录 |
2.91 |
15 |
0.1787 |
0.9733 |
0.3799 |
3.91 |
20 |
0.1787 |
0.9733 |
0.3799 |
4.91 |
25 |
0.1787 |
0.9733 |
0.3799 |
5.91 |
30 |
0.1787 |
0.9733 |
0.3799 |
6.91 |
35 |
0.1787 |
0.9733 |
0.3648 |
7.91 |
40 |
0.1787 |
0.9733 |
0.3648 |
8.91 |
45 |
0.1787 |
0.9733 |
0.3648 |
9.91 |
50 |
0.1787 |
0.9733 |
0.3648 |
10.91 |
55 |
0.1787 |
0.9733 |
0.3954 |
11.91 |
60 |
0.1787 |
0.9733 |
0.3954 |
12.91 |
65 |
0.1787 |
0.9733 |
0.3954 |
13.91 |
70 |
0.1787 |
0.9733 |
0.3954 |
14.91 |
75 |
0.1787 |
0.9733 |
0.3926 |
15.91 |
80 |
0.1787 |
0.9733 |
0.3926 |
16.91 |
85 |
0.1787 |
0.9733 |
0.3926 |
17.91 |
90 |
0.1787 |
0.9733 |
0.3926 |
18.91 |
95 |
0.1787 |
0.9733 |
0.3801 |
19.91 |
100 |
0.1787 |
0.9733 |
0.3801 |
20.91 |
105 |
0.1787 |
0.9733 |
0.3801 |
21.91 |
110 |
0.1787 |
0.9733 |
0.3801 |
22.91 |
115 |
0.1787 |
0.9733 |
0.3815 |
23.91 |
120 |
0.1787 |
0.9733 |
0.3815 |
24.91 |
125 |
0.1787 |
0.9733 |
0.3815 |
25.91 |
130 |
0.1787 |
0.9733 |
0.3815 |
26.91 |
135 |
0.1787 |
0.9733 |
0.3955 |
27.91 |
140 |
0.1787 |
0.9733 |
0.3955 |
28.91 |
145 |
0.1787 |
0.9733 |
0.3955 |
29.91 |
150 |
0.1787 |
0.9733 |
0.3955 |
30.91 |
155 |
0.1787 |
0.9733 |
0.3854 |
31.91 |
160 |
0.1787 |
0.9733 |
0.3854 |
32.91 |
165 |
0.1787 |
0.9733 |
0.3854 |
33.91 |
170 |
0.1787 |
0.9733 |
0.3854 |
34.91 |
175 |
0.1787 |
0.9733 |
0.3949 |
35.91 |
180 |
0.1787 |
0.9733 |
0.3949 |
36.91 |
185 |
0.1787 |
0.9733 |
0.3949 |
37.91 |
190 |
0.1787 |
0.9733 |
0.3949 |
38.91 |
195 |
0.1787 |
0.9733 |
0.423 |
39.91 |
200 |
0.1787 |
0.9733 |
0.423 |
40.91 |
205 |
0.1787 |
0.9733 |
0.423 |
41.91 |
210 |
0.1787 |
0.9733 |
0.423 |
42.91 |
215 |
0.1787 |
0.9733 |
0.3761 |
43.91 |
220 |
0.1787 |
0.9733 |
0.3761 |
44.91 |
225 |
0.1787 |
0.9733 |
0.3761 |
45.91 |
230 |
0.1787 |
0.9733 |
0.3761 |
46.91 |
235 |
0.1787 |
0.9733 |
0.3673 |
47.91 |
240 |
0.1787 |
0.9733 |
0.3673 |
48.91 |
245 |
0.1787 |
0.9733 |
0.3673 |
49.91 |
250 |
0.1787 |
0.9733 |
0.3673 |
50.91 |
255 |
0.1787 |
0.9733 |
0.3639 |
51.91 |
260 |
0.1787 |
0.9733 |
0.3639 |
52.91 |
265 |
0.1787 |
0.9733 |
0.3639 |
53.91 |
270 |
0.1787 |
0.9733 |
0.3639 |
54.91 |
275 |
0.1787 |
0.9733 |
0.4031 |
55.91 |
280 |
0.1787 |
0.9733 |
0.4031 |
56.91 |
285 |
0.1787 |
0.9733 |
0.4031 |
57.91 |
290 |
0.1787 |
0.9733 |
0.4031 |
58.91 |
295 |
0.1787 |
0.9733 |
0.3787 |
59.91 |
300 |
0.1787 |
0.9733 |
框架版本
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
📄 许可证
本模型采用 Apache-2.0 许可证。
模型信息表格
属性 |
详情 |
模型类型 |
货车分类模型 |
训练数据 |
imagefolder 数据集 |
评估指标 |
准确率 |