Resnet 18 Feature Extraction
基於microsoft/resnet-18微調的圖像分類模型,在圖像文件夾數據集上表現優異。
下載量 28
發布時間 : 11/7/2022
模型概述
該模型是基於ResNet-18架構的預訓練模型,經過微調後用於圖像分類任務。在評估集上表現出高準確率和召回率。
模型特點
高準確率
在評估集上達到95%的準確率,表現優異。
平衡的指標
精確率、召回率和F1分數均表現良好,模型預測結果可靠。
微調優化
基於預訓練模型微調,適應特定圖像分類任務。
模型能力
圖像分類
特徵提取
使用案例
計算機視覺
通用圖像分類
可用於對各類圖像進行分類識別
準確率95%,F1分數0.972
🚀 resnet-18特徵提取
本模型是基於microsoft/resnet-18在imagefolder數據集上進行微調的版本。它在評估集上取得了以下成果,展現了出色的性能:
- 損失率:0.1485
- 準確率:0.95
- 精確率:0.9653
- 召回率:0.9789
- F1值:0.9720
- ROC曲線下面積:0.8505
🚀 快速開始
本模型是在imagefolder數據集上對microsoft/resnet-18進行微調得到的。可直接使用該模型進行圖像分類任務,在評估集上有良好的表現。
✨ 主要特性
- 微調模型:基於成熟的microsoft/resnet-18進行微調,繼承了其優秀的特徵提取能力。
- 多指標評估:在評估集上從損失率、準確率、精確率、召回率、F1值和ROC曲線下面積等多個指標進行了評估,全面展示了模型性能。
📚 詳細文檔
模型信息
屬性 | 詳情 |
---|---|
模型類型 | resnet-18特徵提取模型 |
訓練數據 | imagefolder數據集 |
評估指標 | 損失率、準確率、精確率、召回率、F1值、ROC曲線下面積 |
評估結果
該模型在評估集上的表現如下:
指標 | 值 |
---|---|
損失率 | 0.1485 |
準確率 | 0.95 |
精確率 | 0.9653 |
召回率 | 0.9789 |
F1值 | 0.9720 |
ROC曲線下面積 | 0.8505 |
模型索引
- 名稱:resnet-18-feature-extraction
- 結果:
- 任務:
- 名稱:圖像分類
- 類型:圖像分類
- 數據集:
- 名稱:imagefolder
- 類型:imagefolder
- 配置:默認
- 分割:訓練集
- 參數:默認
- 評估指標:
- 名稱:準確率
- 類型:準確率
- 值:0.95
- 名稱:精確率
- 類型:精確率
- 值:0.9652777777777778
- 名稱:召回率
- 類型:召回率
- 值:0.9788732394366197
- 名稱:F1值
- 類型:F1值
- 值:0.972027972027972
- 任務:
🔧 技術細節
訓練超參數
在訓練過程中使用了以下超參數:
- 學習率:2e-05
- 訓練批次大小:64
- 評估批次大小:64
- 隨機種子:42
- 梯度累積步數:4
- 總訓練批次大小:256
- 優化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 學習率調度器類型:線性
- 學習率調度器預熱比例:0.1
- 訓練輪數:50
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 準確率 | 精確率 | 召回率 | F1值 | ROC曲線下面積 |
---|---|---|---|---|---|---|---|---|
無記錄 | 0.8 | 2 | 0.6232 | 0.75 | 0.9636 | 0.7465 | 0.8413 | 0.7621 |
無記錄 | 1.8 | 4 | 0.6971 | 0.4875 | 1.0 | 0.4225 | 0.5941 | 0.7113 |
無記錄 | 2.8 | 6 | 0.7915 | 0.2875 | 1.0 | 0.1972 | 0.3294 | 0.5986 |
無記錄 | 3.8 | 8 | 0.8480 | 0.2875 | 1.0 | 0.1972 | 0.3294 | 0.5986 |
0.8651 | 4.8 | 10 | 0.9094 | 0.2562 | 1.0 | 0.1620 | 0.2788 | 0.5810 |
0.8651 | 5.8 | 12 | 0.7470 | 0.5625 | 1.0 | 0.5070 | 0.6729 | 0.7535 |
0.8651 | 6.8 | 14 | 0.5915 | 0.85 | 1.0 | 0.8310 | 0.9077 | 0.9155 |
0.8651 | 7.8 | 16 | 0.4817 | 0.8875 | 0.9844 | 0.8873 | 0.9333 | 0.8881 |
0.8651 | 8.8 | 18 | 0.3455 | 0.9187 | 0.9778 | 0.9296 | 0.9531 | 0.8815 |
0.5349 | 9.8 | 20 | 0.2966 | 0.9187 | 0.9708 | 0.9366 | 0.9534 | 0.8572 |
0.5349 | 10.8 | 22 | 0.2347 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
0.5349 | 11.8 | 24 | 0.2468 | 0.9313 | 0.9645 | 0.9577 | 0.9611 | 0.8400 |
0.5349 | 12.8 | 26 | 0.2310 | 0.9563 | 0.9720 | 0.9789 | 0.9754 | 0.8783 |
0.5349 | 13.8 | 28 | 0.2083 | 0.9313 | 0.9580 | 0.9648 | 0.9614 | 0.8157 |
0.3593 | 14.8 | 30 | 0.1840 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 |
0.3593 | 15.8 | 32 | 0.1947 | 0.9375 | 0.9648 | 0.9648 | 0.9648 | 0.8435 |
0.3593 | 16.8 | 34 | 0.1837 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 |
0.3593 | 17.8 | 36 | 0.1819 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 |
0.3593 | 18.8 | 38 | 0.1924 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 |
0.2737 | 19.8 | 40 | 0.1990 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
0.2737 | 20.8 | 42 | 0.1759 | 0.95 | 0.9718 | 0.9718 | 0.9718 | 0.8748 |
0.2737 | 21.8 | 44 | 0.1804 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 |
0.2737 | 22.8 | 46 | 0.1666 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 |
0.2737 | 23.8 | 48 | 0.1534 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 |
0.2278 | 24.8 | 50 | 0.1612 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 |
0.2278 | 25.8 | 52 | 0.1535 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 |
0.2278 | 26.8 | 54 | 0.1568 | 0.9437 | 0.9716 | 0.9648 | 0.9682 | 0.8713 |
0.2278 | 27.8 | 56 | 0.2107 | 0.9375 | 0.9714 | 0.9577 | 0.9645 | 0.8678 |
0.2278 | 28.8 | 58 | 0.1592 | 0.9313 | 0.9517 | 0.9718 | 0.9617 | 0.7915 |
0.2057 | 29.8 | 60 | 0.1557 | 0.9375 | 0.9648 | 0.9648 | 0.9648 | 0.8435 |
0.2057 | 30.8 | 62 | 0.1714 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 |
0.2057 | 31.8 | 64 | 0.1571 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
0.2057 | 32.8 | 66 | 0.1574 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 |
0.2057 | 33.8 | 68 | 0.1423 | 0.9563 | 0.9720 | 0.9789 | 0.9754 | 0.8783 |
0.2 | 34.8 | 70 | 0.1677 | 0.9437 | 0.9650 | 0.9718 | 0.9684 | 0.8470 |
0.2 | 35.8 | 72 | 0.1560 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 |
0.2 | 36.8 | 74 | 0.1594 | 0.9375 | 0.9521 | 0.9789 | 0.9653 | 0.7950 |
0.2 | 37.8 | 76 | 0.1512 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 |
0.2 | 38.8 | 78 | 0.1396 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 |
0.1838 | 39.8 | 80 | 0.1509 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 |
0.1838 | 40.8 | 82 | 0.1529 | 0.95 | 0.9718 | 0.9718 | 0.9718 | 0.8748 |
0.1838 | 41.8 | 84 | 0.1506 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
0.1838 | 42.8 | 86 | 0.1549 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
0.1838 | 43.8 | 88 | 0.1331 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 |
0.1872 | 44.8 | 90 | 0.1409 | 0.9437 | 0.9524 | 0.9859 | 0.9689 | 0.7985 |
0.1872 | 45.8 | 92 | 0.1639 | 0.9375 | 0.9583 | 0.9718 | 0.9650 | 0.8192 |
0.1872 | 46.8 | 94 | 0.1391 | 0.95 | 0.9589 | 0.9859 | 0.9722 | 0.8263 |
0.1872 | 47.8 | 96 | 0.1436 | 0.9563 | 0.9655 | 0.9859 | 0.9756 | 0.8541 |
0.1872 | 48.8 | 98 | 0.1442 | 0.9437 | 0.9586 | 0.9789 | 0.9686 | 0.8228 |
0.185 | 49.8 | 100 | 0.1485 | 0.95 | 0.9653 | 0.9789 | 0.9720 | 0.8505 |
框架版本
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
📄 許可證
本模型採用Apache 2.0許可證。
Nsfw Image Detection
Apache-2.0
基於ViT架構的NSFW圖像分類模型,通過監督學習在ImageNet-21k數據集上預訓練,並在80,000張圖像上微調,用於區分正常和NSFW內容。
圖像分類
Transformers

N
Falconsai
82.4M
588
Fairface Age Image Detection
Apache-2.0
基於Vision Transformer架構的圖像分類模型,在ImageNet-21k數據集上預訓練,適用於多類別圖像分類任務
圖像分類
Transformers

F
dima806
76.6M
10
Dinov2 Small
Apache-2.0
基於DINOv2方法訓練的小尺寸視覺Transformer模型,通過自監督學習提取圖像特徵
圖像分類
Transformers

D
facebook
5.0M
31
Vit Base Patch16 224
Apache-2.0
基於ImageNet-21k預訓練和ImageNet微調的視覺變換器模型,用於圖像分類任務
圖像分類
V
google
4.8M
775
Vit Base Patch16 224 In21k
Apache-2.0
基於ImageNet-21k數據集預訓練的視覺Transformer模型,用於圖像分類任務。
圖像分類
V
google
2.2M
323
Dinov2 Base
Apache-2.0
基於DINOv2方法訓練的視覺Transformer模型,通過自監督學習提取圖像特徵
圖像分類
Transformers

D
facebook
1.9M
126
Gender Classification
一個基於PyTorch和HuggingPics構建的圖像分類模型,用於識別圖像中的性別
圖像分類
Transformers

G
rizvandwiki
1.8M
48
Vit Base Nsfw Detector
Apache-2.0
基於Vision Transformer (ViT)架構的圖像分類模型,專門用於檢測圖像是否包含NSFW(不安全)內容。
圖像分類
Transformers

V
AdamCodd
1.2M
47
Vit Hybrid Base Bit 384
Apache-2.0
混合視覺變換器(ViT)模型結合了卷積網絡和Transformer架構,用於圖像分類任務,在ImageNet上表現出色。
圖像分類
Transformers

V
google
992.28k
6
Gender Classification 2
這是一個基於PyTorch框架和HuggingPics工具生成的圖像分類模型,專門用於性別分類任務。
圖像分類
Transformers

G
rizvandwiki
906.98k
32
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98