đ resnet-18-feature-extraction
This model is a fine - tuned version of microsoft/resnet-18 on the imagefolder dataset. It can effectively perform image classification tasks and achieves high accuracy, precision, recall, and F1 scores on the evaluation set.
đ Quick Start
This model is ready for use after fine - tuning on the imagefolder dataset. You can directly utilize it for image classification tasks.
đ Documentation
Model Performance
It achieves the following results on the evaluation set:
- Loss: 0.1485
- Accuracy: 0.95
- Precision: 0.9653
- Recall: 0.9789
- F1: 0.9720
- Roc Auc: 0.8505
Model Index
Property |
Details |
Model Name |
resnet-18-feature-extraction |
Task |
Image Classification |
Dataset |
imagefolder |
Metrics |
Accuracy: 0.95, Precision: 0.9652777777777778, Recall: 0.9788732394366197, F1: 0.972027972027972 |
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
Roc Auc |
No log |
0.8 |
2 |
0.6232 |
0.75 |
0.9636 |
0.7465 |
0.8413 |
0.7621 |
No log |
1.8 |
4 |
0.6971 |
0.4875 |
1.0 |
0.4225 |
0.5941 |
0.7113 |
No log |
2.8 |
6 |
0.7915 |
0.2875 |
1.0 |
0.1972 |
0.3294 |
0.5986 |
No log |
3.8 |
8 |
0.8480 |
0.2875 |
1.0 |
0.1972 |
0.3294 |
0.5986 |
0.8651 |
4.8 |
10 |
0.9094 |
0.2562 |
1.0 |
0.1620 |
0.2788 |
0.5810 |
0.8651 |
5.8 |
12 |
0.7470 |
0.5625 |
1.0 |
0.5070 |
0.6729 |
0.7535 |
0.8651 |
6.8 |
14 |
0.5915 |
0.85 |
1.0 |
0.8310 |
0.9077 |
0.9155 |
0.8651 |
7.8 |
16 |
0.4817 |
0.8875 |
0.9844 |
0.8873 |
0.9333 |
0.8881 |
0.8651 |
8.8 |
18 |
0.3455 |
0.9187 |
0.9778 |
0.9296 |
0.9531 |
0.8815 |
0.5349 |
9.8 |
20 |
0.2966 |
0.9187 |
0.9708 |
0.9366 |
0.9534 |
0.8572 |
0.5349 |
10.8 |
22 |
0.2347 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
0.5349 |
11.8 |
24 |
0.2468 |
0.9313 |
0.9645 |
0.9577 |
0.9611 |
0.8400 |
0.5349 |
12.8 |
26 |
0.2310 |
0.9563 |
0.9720 |
0.9789 |
0.9754 |
0.8783 |
0.5349 |
13.8 |
28 |
0.2083 |
0.9313 |
0.9580 |
0.9648 |
0.9614 |
0.8157 |
0.3593 |
14.8 |
30 |
0.1840 |
0.9375 |
0.9521 |
0.9789 |
0.9653 |
0.7950 |
0.3593 |
15.8 |
32 |
0.1947 |
0.9375 |
0.9648 |
0.9648 |
0.9648 |
0.8435 |
0.3593 |
16.8 |
34 |
0.1837 |
0.9313 |
0.9517 |
0.9718 |
0.9617 |
0.7915 |
0.3593 |
17.8 |
36 |
0.1819 |
0.9437 |
0.9524 |
0.9859 |
0.9689 |
0.7985 |
0.3593 |
18.8 |
38 |
0.1924 |
0.9437 |
0.9650 |
0.9718 |
0.9684 |
0.8470 |
0.2737 |
19.8 |
40 |
0.1990 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
0.2737 |
20.8 |
42 |
0.1759 |
0.95 |
0.9718 |
0.9718 |
0.9718 |
0.8748 |
0.2737 |
21.8 |
44 |
0.1804 |
0.9313 |
0.9517 |
0.9718 |
0.9617 |
0.7915 |
0.2737 |
22.8 |
46 |
0.1666 |
0.9313 |
0.9517 |
0.9718 |
0.9617 |
0.7915 |
0.2737 |
23.8 |
48 |
0.1534 |
0.9437 |
0.9524 |
0.9859 |
0.9689 |
0.7985 |
0.2278 |
24.8 |
50 |
0.1612 |
0.9375 |
0.9521 |
0.9789 |
0.9653 |
0.7950 |
0.2278 |
25.8 |
52 |
0.1535 |
0.9437 |
0.9586 |
0.9789 |
0.9686 |
0.8228 |
0.2278 |
26.8 |
54 |
0.1568 |
0.9437 |
0.9716 |
0.9648 |
0.9682 |
0.8713 |
0.2278 |
27.8 |
56 |
0.2107 |
0.9375 |
0.9714 |
0.9577 |
0.9645 |
0.8678 |
0.2278 |
28.8 |
58 |
0.1592 |
0.9313 |
0.9517 |
0.9718 |
0.9617 |
0.7915 |
0.2057 |
29.8 |
60 |
0.1557 |
0.9375 |
0.9648 |
0.9648 |
0.9648 |
0.8435 |
0.2057 |
30.8 |
62 |
0.1714 |
0.9437 |
0.9650 |
0.9718 |
0.9684 |
0.8470 |
0.2057 |
31.8 |
64 |
0.1571 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
0.2057 |
32.8 |
66 |
0.1574 |
0.9375 |
0.9583 |
0.9718 |
0.9650 |
0.8192 |
0.2057 |
33.8 |
68 |
0.1423 |
0.9563 |
0.9720 |
0.9789 |
0.9754 |
0.8783 |
0.2 |
34.8 |
70 |
0.1677 |
0.9437 |
0.9650 |
0.9718 |
0.9684 |
0.8470 |
0.2 |
35.8 |
72 |
0.1560 |
0.9375 |
0.9583 |
0.9718 |
0.9650 |
0.8192 |
0.2 |
36.8 |
74 |
0.1594 |
0.9375 |
0.9521 |
0.9789 |
0.9653 |
0.7950 |
0.2 |
37.8 |
76 |
0.1512 |
0.9437 |
0.9586 |
0.9789 |
0.9686 |
0.8228 |
0.2 |
38.8 |
78 |
0.1396 |
0.9563 |
0.9655 |
0.9859 |
0.9756 |
0.8541 |
0.1838 |
39.8 |
80 |
0.1509 |
0.9375 |
0.9583 |
0.9718 |
0.9650 |
0.8192 |
0.1838 |
40.8 |
82 |
0.1529 |
0.95 |
0.9718 |
0.9718 |
0.9718 |
0.8748 |
0.1838 |
41.8 |
84 |
0.1506 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
0.1838 |
42.8 |
86 |
0.1549 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
0.1838 |
43.8 |
88 |
0.1331 |
0.9563 |
0.9655 |
0.9859 |
0.9756 |
0.8541 |
0.1872 |
44.8 |
90 |
0.1409 |
0.9437 |
0.9524 |
0.9859 |
0.9689 |
0.7985 |
0.1872 |
45.8 |
92 |
0.1639 |
0.9375 |
0.9583 |
0.9718 |
0.9650 |
0.8192 |
0.1872 |
46.8 |
94 |
0.1391 |
0.95 |
0.9589 |
0.9859 |
0.9722 |
0.8263 |
0.1872 |
47.8 |
96 |
0.1436 |
0.9563 |
0.9655 |
0.9859 |
0.9756 |
0.8541 |
0.1872 |
48.8 |
98 |
0.1442 |
0.9437 |
0.9586 |
0.9789 |
0.9686 |
0.8228 |
0.185 |
49.8 |
100 |
0.1485 |
0.95 |
0.9653 |
0.9789 |
0.9720 |
0.8505 |
Framework Versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
đ License
This model is licensed under the Apache - 2.0 license.