🚀 VideoMAE-v2(基礎大小模型,在UnlabeledHybrid-1M上預訓練)
VideoMAE-v2是一個基於自監督學習的視頻分類模型,在UnlabeledHybrid-1M數據集上進行了800個epoch的預訓練。該模型由Wang等人在論文[CVPR23]VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking中提出,並首次在GitHub上發佈。
🚀 快速開始
預期用途與限制
你可以使用該原始模型進行視頻特徵提取。
使用方法
以下是如何使用此模型提取視頻特徵的示例代碼:
from transformers import VideoMAEImageProcessor, AutoModel, AutoConfig
import numpy as np
import torch
config = AutoConfig.from_pretrained("OpenGVLab/VideoMAEv2-Base", trust_remote_code=True)
processor = VideoMAEImageProcessor.from_pretrained("OpenGVLab/VideoMAEv2-Base")
model = AutoModel.from_pretrained('OpenGVLab/VideoMAEv2-Base', config=config, trust_remote_code=True)
video = list(np.random.rand(16, 3, 224, 224))
inputs = processor(video, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].permute(0, 2, 1, 3, 4)
with torch.no_grad():
outputs = model(**inputs)
📄 許可證
本項目採用CC BY-NC 4.0許可證。
📚 引用信息
如果你在研究中使用了該模型,請使用以下BibTeX條目進行引用:
@InProceedings{wang2023videomaev2,
author = {Wang, Limin and Huang, Bingkun and Zhao, Zhiyu and Tong, Zhan and He, Yinan and Wang, Yi and Wang, Yali and Qiao, Yu},
title = {VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {14549-14560}
}
@misc{videomaev2,
title={VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking},
author={Limin Wang and Bingkun Huang and Zhiyu Zhao and Zhan Tong and Yinan He and Yi Wang and Yali Wang and Yu Qiao},
year={2023},
eprint={2303.16727},
archivePrefix={arXiv},
primaryClass={cs.CV}
}