🚀 MaskFormer
MaskFormer是一個在COCO全景分割數據集上訓練的模型(微型版本,採用Swin骨幹網絡)。它解決了實例分割、語義分割和全景分割等任務,為圖像分割領域帶來了新的解決方案。
🚀 快速開始
你可以使用以下代碼示例來使用這個模型進行語義分割:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-coco")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-coco")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
predicted_panoptic_map = result["segmentation"]
更多代碼示例,請參考文檔。
✨ 主要特性
MaskFormer採用相同的範式來處理實例分割、語義分割和全景分割:通過預測一組掩碼和相應的標籤。因此,所有這3個任務都被視為實例分割任務。

📚 詳細文檔
預期用途和限制
你可以使用這個特定的檢查點進行語義分割。查看模型中心,以尋找其他針對你感興趣的任務進行微調的版本。
使用說明
這裡展示瞭如何使用這個模型:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-coco")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-coco")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
predicted_panoptic_map = result["segmentation"]
📄 許可證
許可證類型:other