🚀 MaskFormer
MaskFormer是一个在COCO全景分割数据集上训练的模型(微型版本,采用Swin骨干网络)。它解决了实例分割、语义分割和全景分割等任务,为图像分割领域带来了新的解决方案。
🚀 快速开始
你可以使用以下代码示例来使用这个模型进行语义分割:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-coco")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-coco")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
predicted_panoptic_map = result["segmentation"]
更多代码示例,请参考文档。
✨ 主要特性
MaskFormer采用相同的范式来处理实例分割、语义分割和全景分割:通过预测一组掩码和相应的标签。因此,所有这3个任务都被视为实例分割任务。

📚 详细文档
预期用途和限制
你可以使用这个特定的检查点进行语义分割。查看模型中心,以寻找其他针对你感兴趣的任务进行微调的版本。
使用说明
这里展示了如何使用这个模型:
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-coco")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-coco")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
result = feature_extractor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
predicted_panoptic_map = result["segmentation"]
📄 许可证
许可证类型:other