🚀 基於人行道語義數據集微調的SegFormer(b5尺寸)模型
本項目是在SegmentsAI的sidewalk-semantic
數據集上微調的SegFormer模型。該模型由Xie等人在論文SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers中提出,並首次在此倉庫中發佈,可用於高效的圖像語義分割任務。
🚀 快速開始
本模型是基於SegmentsAI的sidewalk-semantic
數據集對SegFormer進行微調得到的。它由Xie等人在論文SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers中提出,並首次在此倉庫中發佈。
✨ 主要特性
SegFormer由一個分層的Transformer編碼器和一個輕量級的全MLP解碼頭組成,在ADE20K和Cityscapes等語義分割基準測試中取得了優異的成績。分層Transformer首先在ImageNet - 1k上進行預訓練,然後添加解碼頭,並在下游數據集上進行整體微調。
💻 使用示例
基礎用法
from transformers import SegformerFeatureExtractor, SegformerForImageClassification
from PIL import Image
import requests
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
model = SegformerForImageClassification.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
你可以在這裡查看詳細的筆記本示例。更多代碼示例請參考文檔。
📄 許可證
該模型的許可證可在這裡找到。
📚 詳細文檔
BibTeX引用
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}