🚀 基于人行道语义数据集微调的SegFormer(b5尺寸)模型
本项目是在SegmentsAI的sidewalk-semantic
数据集上微调的SegFormer模型。该模型由Xie等人在论文SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers中提出,并首次在此仓库中发布,可用于高效的图像语义分割任务。
🚀 快速开始
本模型是基于SegmentsAI的sidewalk-semantic
数据集对SegFormer进行微调得到的。它由Xie等人在论文SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers中提出,并首次在此仓库中发布。
✨ 主要特性
SegFormer由一个分层的Transformer编码器和一个轻量级的全MLP解码头组成,在ADE20K和Cityscapes等语义分割基准测试中取得了优异的成绩。分层Transformer首先在ImageNet - 1k上进行预训练,然后添加解码头,并在下游数据集上进行整体微调。
💻 使用示例
基础用法
from transformers import SegformerFeatureExtractor, SegformerForImageClassification
from PIL import Image
import requests
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
model = SegformerForImageClassification.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
你可以在这里查看详细的笔记本示例。更多代码示例请参考文档。
📄 许可证
该模型的许可证可在这里找到。
📚 详细文档
BibTeX引用
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}