🚀 用於衣物分割的微調Segformer B0模型
本項目是基於ATR數據集對SegFormer模型進行微調,以實現衣物分割任務。該數據集在Hugging Face上的名稱為 "mattmdjaga/human_parsing_dataset"。
🚀 快速開始
SegFormer模型經過微調,可用於衣物分割任務。以下是使用該模型進行衣物分割的代碼示例:
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
💻 使用示例
基礎用法
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
📄 許可證
本項目採用MIT許可證。
相關信息
屬性 |
詳情 |
標籤 |
視覺、圖像分割 |
數據集 |
mattmdjaga/human_parsing_dataset |
示例圖片1 |
Person |
示例圖片2 |
Person |