Ecc Segformer Main
模型概述
該模型是基於SegFormer架構的圖像分割模型,專門用於工程裂縫檢測。在評估集上表現出良好的裂縫識別能力。
模型特點
裂縫檢測能力
專門針對工程裂縫檢測任務進行優化,在評估集上裂縫交併比達到0.4658
SegFormer架構
基於高效的SegFormer架構,採用mit-b5作為backbone
模型能力
圖像分割
裂縫檢測
工程結構健康監測
使用案例
基礎設施檢測
混凝土結構裂縫檢測
用於檢測建築物、橋樑等混凝土結構中的裂縫
裂縫準確率0.4658
🚀 ecc_segformer_main
該模型是基於nvidia/mit-b5在rishitunu/ecc_crackdetector_dataset_main數據集上進行微調的版本。它在評估集上取得了以下結果,可用於圖像分割等視覺相關任務,為相關領域的研究和應用提供了有力支持。
🚀 快速開始
該模型是 nvidia/mit-b5 在 rishitunu/ecc_crackdetector_dataset_main 數據集上的微調版本。它在評估集上達到了以下結果:
- 損失值:0.1918
- 平均交併比(Mean Iou):0.2329
- 平均準確率:0.4658
- 總體準確率:0.4658
- 背景準確率:nan
- 裂縫準確率:0.4658
- 背景交併比:0.0
- 裂縫交併比:0.4658
📚 詳細文檔
訓練和評估數據
更多信息待補充。
訓練過程
訓練超參數
訓練期間使用了以下超參數:
- 學習率:6e - 05
- 訓練批次大小:2
- 評估批次大小:2
- 隨機種子:1337
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e - 08)
- 學習率調度器類型:多項式
- 訓練步數:10000
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 平均交併比 | 平均準確率 | 總體準確率 | 背景準確率 | 裂縫準確率 | 背景交併比 | 裂縫交併比 |
---|---|---|---|---|---|---|---|---|---|---|
0.1069 | 1.0 | 172 | 0.1376 | 0.1660 | 0.3320 | 0.3320 | nan | 0.3320 | 0.0 | 0.3320 |
0.0682 | 2.0 | 344 | 0.1327 | 0.2298 | 0.4596 | 0.4596 | nan | 0.4596 | 0.0 | 0.4596 |
0.0666 | 3.0 | 516 | 0.2478 | 0.1200 | 0.2401 | 0.2401 | nan | 0.2401 | 0.0 | 0.2401 |
0.0639 | 4.0 | 688 | 0.1732 | 0.1538 | 0.3076 | 0.3076 | nan | 0.3076 | 0.0 | 0.3076 |
0.0624 | 5.0 | 860 | 0.1027 | 0.2334 | 0.4668 | 0.4668 | nan | 0.4668 | 0.0 | 0.4668 |
0.0557 | 6.0 | 1032 | 0.1003 | 0.1851 | 0.3703 | 0.3703 | nan | 0.3703 | 0.0 | 0.3703 |
0.0563 | 7.0 | 1204 | 0.1512 | 0.2007 | 0.4014 | 0.4014 | nan | 0.4014 | 0.0 | 0.4014 |
0.054 | 8.0 | 1376 | 0.1000 | 0.2401 | 0.4802 | 0.4802 | nan | 0.4802 | 0.0 | 0.4802 |
0.0546 | 9.0 | 1548 | 0.0933 | 0.2238 | 0.4475 | 0.4475 | nan | 0.4475 | 0.0 | 0.4475 |
0.0498 | 10.0 | 1720 | 0.0964 | 0.2303 | 0.4606 | 0.4606 | nan | 0.4606 | 0.0 | 0.4606 |
0.0515 | 11.0 | 1892 | 0.1107 | 0.2258 | 0.4516 | 0.4516 | nan | 0.4516 | 0.0 | 0.4516 |
0.0453 | 12.0 | 2064 | 0.0961 | 0.2557 | 0.5115 | 0.5115 | nan | 0.5115 | 0.0 | 0.5115 |
0.0431 | 13.0 | 2236 | 0.1027 | 0.2396 | 0.4792 | 0.4792 | nan | 0.4792 | 0.0 | 0.4792 |
0.0418 | 14.0 | 2408 | 0.1027 | 0.2521 | 0.5042 | 0.5042 | nan | 0.5042 | 0.0 | 0.5042 |
0.0426 | 15.0 | 2580 | 0.1059 | 0.2561 | 0.5123 | 0.5123 | nan | 0.5123 | 0.0 | 0.5123 |
0.0377 | 16.0 | 2752 | 0.1193 | 0.2281 | 0.4561 | 0.4561 | nan | 0.4561 | 0.0 | 0.4561 |
0.0369 | 17.0 | 2924 | 0.1161 | 0.2486 | 0.4972 | 0.4972 | nan | 0.4972 | 0.0 | 0.4972 |
0.036 | 18.0 | 3096 | 0.1058 | 0.2515 | 0.5029 | 0.5029 | nan | 0.5029 | 0.0 | 0.5029 |
0.034 | 19.0 | 3268 | 0.1176 | 0.2434 | 0.4868 | 0.4868 | nan | 0.4868 | 0.0 | 0.4868 |
0.0337 | 20.0 | 3440 | 0.1162 | 0.2254 | 0.4509 | 0.4509 | nan | 0.4509 | 0.0 | 0.4509 |
0.0281 | 21.0 | 3612 | 0.1203 | 0.2213 | 0.4426 | 0.4426 | nan | 0.4426 | 0.0 | 0.4426 |
0.0354 | 22.0 | 3784 | 0.1266 | 0.2384 | 0.4768 | 0.4768 | nan | 0.4768 | 0.0 | 0.4768 |
0.0323 | 23.0 | 3956 | 0.1223 | 0.2409 | 0.4818 | 0.4818 | nan | 0.4818 | 0.0 | 0.4818 |
0.0299 | 24.0 | 4128 | 0.1356 | 0.2195 | 0.4390 | 0.4390 | nan | 0.4390 | 0.0 | 0.4390 |
0.0294 | 25.0 | 4300 | 0.1285 | 0.2318 | 0.4636 | 0.4636 | nan | 0.4636 | 0.0 | 0.4636 |
0.0295 | 26.0 | 4472 | 0.1274 | 0.2559 | 0.5119 | 0.5119 | nan | 0.5119 | 0.0 | 0.5119 |
0.0252 | 27.0 | 4644 | 0.1387 | 0.2413 | 0.4827 | 0.4827 | nan | 0.4827 | 0.0 | 0.4827 |
0.029 | 28.0 | 4816 | 0.1468 | 0.2236 | 0.4472 | 0.4472 | nan | 0.4472 | 0.0 | 0.4472 |
0.0218 | 29.0 | 4988 | 0.1448 | 0.2433 | 0.4866 | 0.4866 | nan | 0.4866 | 0.0 | 0.4866 |
0.0275 | 30.0 | 5160 | 0.1478 | 0.2318 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4635 |
0.0233 | 31.0 | 5332 | 0.1377 | 0.2502 | 0.5005 | 0.5005 | nan | 0.5005 | 0.0 | 0.5005 |
0.0252 | 32.0 | 5504 | 0.1458 | 0.2399 | 0.4797 | 0.4797 | nan | 0.4797 | 0.0 | 0.4797 |
0.0245 | 33.0 | 5676 | 0.1431 | 0.2480 | 0.4960 | 0.4960 | nan | 0.4960 | 0.0 | 0.4960 |
0.0225 | 34.0 | 5848 | 0.1562 | 0.2439 | 0.4879 | 0.4879 | nan | 0.4879 | 0.0 | 0.4879 |
0.0242 | 35.0 | 6020 | 0.1633 | 0.2323 | 0.4646 | 0.4646 | nan | 0.4646 | 0.0 | 0.4646 |
0.0213 | 36.0 | 6192 | 0.1666 | 0.2274 | 0.4549 | 0.4549 | nan | 0.4549 | 0.0 | 0.4549 |
0.0256 | 37.0 | 6364 | 0.1665 | 0.2340 | 0.4680 | 0.4680 | nan | 0.4680 | 0.0 | 0.4680 |
0.0237 | 38.0 | 6536 | 0.1658 | 0.2410 | 0.4819 | 0.4819 | nan | 0.4819 | 0.0 | 0.4819 |
0.0192 | 39.0 | 6708 | 0.1705 | 0.2286 | 0.4572 | 0.4572 | nan | 0.4572 | 0.0 | 0.4572 |
0.0198 | 40.0 | 6880 | 0.1688 | 0.2322 | 0.4644 | 0.4644 | nan | 0.4644 | 0.0 | 0.4644 |
0.0214 | 41.0 | 7052 | 0.1717 | 0.2315 | 0.4630 | 0.4630 | nan | 0.4630 | 0.0 | 0.4630 |
0.0197 | 42.0 | 7224 | 0.1764 | 0.2338 | 0.4677 | 0.4677 | nan | 0.4677 | 0.0 | 0.4677 |
0.0187 | 43.0 | 7396 | 0.1764 | 0.2437 | 0.4874 | 0.4874 | nan | 0.4874 | 0.0 | 0.4874 |
0.0212 | 44.0 | 7568 | 0.1874 | 0.2259 | 0.4519 | 0.4519 | nan | 0.4519 | 0.0 | 0.4519 |
0.0188 | 45.0 | 7740 | 0.1854 | 0.2362 | 0.4725 | 0.4725 | nan | 0.4725 | 0.0 | 0.4725 |
0.0188 | 46.0 | 7912 | 0.1772 | 0.2320 | 0.4641 | 0.4641 | nan | 0.4641 | 0.0 | 0.4641 |
0.0228 | 47.0 | 8084 | 0.1783 | 0.2385 | 0.4770 | 0.4770 | nan | 0.4770 | 0.0 | 0.4770 |
0.0199 | 48.0 | 8256 | 0.1850 | 0.2317 | 0.4634 | 0.4634 | nan | 0.4634 | 0.0 | 0.4634 |
0.0202 | 49.0 | 8428 | 0.1872 | 0.2336 | 0.4672 | 0.4672 | nan | 0.4672 | 0.0 | 0.4672 |
0.0181 | 50.0 | 8600 | 0.1803 | 0.2405 | 0.4810 | 0.4810 | nan | 0.4810 | 0.0 | 0.4810 |
0.0157 | 51.0 | 8772 | 0.1874 | 0.2349 | 0.4697 | 0.4697 | nan | 0.4697 | 0.0 | 0.4697 |
0.0162 | 52.0 | 8944 | 0.1889 | 0.2332 | 0.4665 | 0.4665 | nan | 0.4665 | 0.0 | 0.4665 |
0.0178 | 53.0 | 9116 | 0.1948 | 0.2357 | 0.4715 | 0.4715 | nan | 0.4715 | 0.0 | 0.4715 |
0.0166 | 54.0 | 9288 | 0.1911 | 0.2333 | 0.4666 | 0.4666 | nan | 0.4666 | 0.0 | 0.4666 |
0.0193 | 55.0 | 9460 | 0.1959 | 0.2306 | 0.4611 | 0.4611 | nan | 0.4611 | 0.0 | 0.4611 |
0.0199 | 56.0 | 9632 | 0.1999 | 0.2330 | 0.4659 | 0.4659 | nan | 0.4659 | 0.0 | 0.4659 |
0.0177 | 57.0 | 9804 | 0.1943 | 0.2319 | 0.4639 | 0.4639 | nan | 0.4639 | 0.0 | 0.4639 |
0.019 | 58.0 | 9976 | 0.1926 | 0.2327 | 0.4653 | 0.4653 | nan | 0.4653 | 0.0 | 0.4653 |
0.0187 | 58.14 | 10000 | 0.1918 | 0.2329 | 0.4658 | 0.4658 | nan | 0.4658 | 0.0 | 0.4658 |
框架版本
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
📄 許可證
該項目採用其他許可證。
信息表格
屬性 | 詳情 |
---|---|
模型類型 | 基於nvidia/mit-b5微調的圖像分割模型 |
訓練數據 | rishitunu/ecc_crackdetector_dataset_main數據集 |
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一種基於文本與圖像提示的圖像分割模型,支持零樣本和單樣本圖像分割任務。
圖像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先進的背景移除模型,專為高效分離各類圖像的前景與背景而設計,適用於非商業用途。
圖像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI開發的最新背景移除模型,能有效分離各類圖像的前景與背景,適合大規模商業內容創作場景。
圖像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基於ATR數據集微調的SegFormer模型,用於服裝和人體分割
圖像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一個能夠通過輸入提示(如點或框)生成高質量對象掩碼的視覺模型,支持零樣本分割任務
圖像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一個用於高分辨率二分圖像分割的深度學習模型,通過雙邊參考網絡實現精確的圖像分割。
圖像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一種基於Transformer的語義分割模型,在ADE20K數據集上進行了微調,適用於圖像分割任務。
圖像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一個能夠通過輸入提示點或邊界框生成高質量物體掩膜的視覺模型,具備零樣本遷移能力。
圖像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基於nvidia/mit-b5微調的語義分割模型,用於面部解析任務
圖像分割
Transformers 英語

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一個能夠根據輸入提示生成高質量對象掩碼的視覺模型,支持零樣本遷移到新任務
圖像分割
Transformers 其他

S
facebook
324.78k
163
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98