Ecc Segformer Main
模型简介
该模型是基于SegFormer架构的图像分割模型,专门用于工程裂缝检测。在评估集上表现出良好的裂缝识别能力。
模型特点
裂缝检测能力
专门针对工程裂缝检测任务进行优化,在评估集上裂缝交并比达到0.4658
SegFormer架构
基于高效的SegFormer架构,采用mit-b5作为backbone
模型能力
图像分割
裂缝检测
工程结构健康监测
使用案例
基础设施检测
混凝土结构裂缝检测
用于检测建筑物、桥梁等混凝土结构中的裂缝
裂缝准确率0.4658
🚀 ecc_segformer_main
该模型是基于nvidia/mit-b5在rishitunu/ecc_crackdetector_dataset_main数据集上进行微调的版本。它在评估集上取得了以下结果,可用于图像分割等视觉相关任务,为相关领域的研究和应用提供了有力支持。
🚀 快速开始
该模型是 nvidia/mit-b5 在 rishitunu/ecc_crackdetector_dataset_main 数据集上的微调版本。它在评估集上达到了以下结果:
- 损失值:0.1918
- 平均交并比(Mean Iou):0.2329
- 平均准确率:0.4658
- 总体准确率:0.4658
- 背景准确率:nan
- 裂缝准确率:0.4658
- 背景交并比:0.0
- 裂缝交并比:0.4658
📚 详细文档
训练和评估数据
更多信息待补充。
训练过程
训练超参数
训练期间使用了以下超参数:
- 学习率:6e - 05
- 训练批次大小:2
- 评估批次大小:2
- 随机种子:1337
- 优化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e - 08)
- 学习率调度器类型:多项式
- 训练步数:10000
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 平均交并比 | 平均准确率 | 总体准确率 | 背景准确率 | 裂缝准确率 | 背景交并比 | 裂缝交并比 |
---|---|---|---|---|---|---|---|---|---|---|
0.1069 | 1.0 | 172 | 0.1376 | 0.1660 | 0.3320 | 0.3320 | nan | 0.3320 | 0.0 | 0.3320 |
0.0682 | 2.0 | 344 | 0.1327 | 0.2298 | 0.4596 | 0.4596 | nan | 0.4596 | 0.0 | 0.4596 |
0.0666 | 3.0 | 516 | 0.2478 | 0.1200 | 0.2401 | 0.2401 | nan | 0.2401 | 0.0 | 0.2401 |
0.0639 | 4.0 | 688 | 0.1732 | 0.1538 | 0.3076 | 0.3076 | nan | 0.3076 | 0.0 | 0.3076 |
0.0624 | 5.0 | 860 | 0.1027 | 0.2334 | 0.4668 | 0.4668 | nan | 0.4668 | 0.0 | 0.4668 |
0.0557 | 6.0 | 1032 | 0.1003 | 0.1851 | 0.3703 | 0.3703 | nan | 0.3703 | 0.0 | 0.3703 |
0.0563 | 7.0 | 1204 | 0.1512 | 0.2007 | 0.4014 | 0.4014 | nan | 0.4014 | 0.0 | 0.4014 |
0.054 | 8.0 | 1376 | 0.1000 | 0.2401 | 0.4802 | 0.4802 | nan | 0.4802 | 0.0 | 0.4802 |
0.0546 | 9.0 | 1548 | 0.0933 | 0.2238 | 0.4475 | 0.4475 | nan | 0.4475 | 0.0 | 0.4475 |
0.0498 | 10.0 | 1720 | 0.0964 | 0.2303 | 0.4606 | 0.4606 | nan | 0.4606 | 0.0 | 0.4606 |
0.0515 | 11.0 | 1892 | 0.1107 | 0.2258 | 0.4516 | 0.4516 | nan | 0.4516 | 0.0 | 0.4516 |
0.0453 | 12.0 | 2064 | 0.0961 | 0.2557 | 0.5115 | 0.5115 | nan | 0.5115 | 0.0 | 0.5115 |
0.0431 | 13.0 | 2236 | 0.1027 | 0.2396 | 0.4792 | 0.4792 | nan | 0.4792 | 0.0 | 0.4792 |
0.0418 | 14.0 | 2408 | 0.1027 | 0.2521 | 0.5042 | 0.5042 | nan | 0.5042 | 0.0 | 0.5042 |
0.0426 | 15.0 | 2580 | 0.1059 | 0.2561 | 0.5123 | 0.5123 | nan | 0.5123 | 0.0 | 0.5123 |
0.0377 | 16.0 | 2752 | 0.1193 | 0.2281 | 0.4561 | 0.4561 | nan | 0.4561 | 0.0 | 0.4561 |
0.0369 | 17.0 | 2924 | 0.1161 | 0.2486 | 0.4972 | 0.4972 | nan | 0.4972 | 0.0 | 0.4972 |
0.036 | 18.0 | 3096 | 0.1058 | 0.2515 | 0.5029 | 0.5029 | nan | 0.5029 | 0.0 | 0.5029 |
0.034 | 19.0 | 3268 | 0.1176 | 0.2434 | 0.4868 | 0.4868 | nan | 0.4868 | 0.0 | 0.4868 |
0.0337 | 20.0 | 3440 | 0.1162 | 0.2254 | 0.4509 | 0.4509 | nan | 0.4509 | 0.0 | 0.4509 |
0.0281 | 21.0 | 3612 | 0.1203 | 0.2213 | 0.4426 | 0.4426 | nan | 0.4426 | 0.0 | 0.4426 |
0.0354 | 22.0 | 3784 | 0.1266 | 0.2384 | 0.4768 | 0.4768 | nan | 0.4768 | 0.0 | 0.4768 |
0.0323 | 23.0 | 3956 | 0.1223 | 0.2409 | 0.4818 | 0.4818 | nan | 0.4818 | 0.0 | 0.4818 |
0.0299 | 24.0 | 4128 | 0.1356 | 0.2195 | 0.4390 | 0.4390 | nan | 0.4390 | 0.0 | 0.4390 |
0.0294 | 25.0 | 4300 | 0.1285 | 0.2318 | 0.4636 | 0.4636 | nan | 0.4636 | 0.0 | 0.4636 |
0.0295 | 26.0 | 4472 | 0.1274 | 0.2559 | 0.5119 | 0.5119 | nan | 0.5119 | 0.0 | 0.5119 |
0.0252 | 27.0 | 4644 | 0.1387 | 0.2413 | 0.4827 | 0.4827 | nan | 0.4827 | 0.0 | 0.4827 |
0.029 | 28.0 | 4816 | 0.1468 | 0.2236 | 0.4472 | 0.4472 | nan | 0.4472 | 0.0 | 0.4472 |
0.0218 | 29.0 | 4988 | 0.1448 | 0.2433 | 0.4866 | 0.4866 | nan | 0.4866 | 0.0 | 0.4866 |
0.0275 | 30.0 | 5160 | 0.1478 | 0.2318 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4635 |
0.0233 | 31.0 | 5332 | 0.1377 | 0.2502 | 0.5005 | 0.5005 | nan | 0.5005 | 0.0 | 0.5005 |
0.0252 | 32.0 | 5504 | 0.1458 | 0.2399 | 0.4797 | 0.4797 | nan | 0.4797 | 0.0 | 0.4797 |
0.0245 | 33.0 | 5676 | 0.1431 | 0.2480 | 0.4960 | 0.4960 | nan | 0.4960 | 0.0 | 0.4960 |
0.0225 | 34.0 | 5848 | 0.1562 | 0.2439 | 0.4879 | 0.4879 | nan | 0.4879 | 0.0 | 0.4879 |
0.0242 | 35.0 | 6020 | 0.1633 | 0.2323 | 0.4646 | 0.4646 | nan | 0.4646 | 0.0 | 0.4646 |
0.0213 | 36.0 | 6192 | 0.1666 | 0.2274 | 0.4549 | 0.4549 | nan | 0.4549 | 0.0 | 0.4549 |
0.0256 | 37.0 | 6364 | 0.1665 | 0.2340 | 0.4680 | 0.4680 | nan | 0.4680 | 0.0 | 0.4680 |
0.0237 | 38.0 | 6536 | 0.1658 | 0.2410 | 0.4819 | 0.4819 | nan | 0.4819 | 0.0 | 0.4819 |
0.0192 | 39.0 | 6708 | 0.1705 | 0.2286 | 0.4572 | 0.4572 | nan | 0.4572 | 0.0 | 0.4572 |
0.0198 | 40.0 | 6880 | 0.1688 | 0.2322 | 0.4644 | 0.4644 | nan | 0.4644 | 0.0 | 0.4644 |
0.0214 | 41.0 | 7052 | 0.1717 | 0.2315 | 0.4630 | 0.4630 | nan | 0.4630 | 0.0 | 0.4630 |
0.0197 | 42.0 | 7224 | 0.1764 | 0.2338 | 0.4677 | 0.4677 | nan | 0.4677 | 0.0 | 0.4677 |
0.0187 | 43.0 | 7396 | 0.1764 | 0.2437 | 0.4874 | 0.4874 | nan | 0.4874 | 0.0 | 0.4874 |
0.0212 | 44.0 | 7568 | 0.1874 | 0.2259 | 0.4519 | 0.4519 | nan | 0.4519 | 0.0 | 0.4519 |
0.0188 | 45.0 | 7740 | 0.1854 | 0.2362 | 0.4725 | 0.4725 | nan | 0.4725 | 0.0 | 0.4725 |
0.0188 | 46.0 | 7912 | 0.1772 | 0.2320 | 0.4641 | 0.4641 | nan | 0.4641 | 0.0 | 0.4641 |
0.0228 | 47.0 | 8084 | 0.1783 | 0.2385 | 0.4770 | 0.4770 | nan | 0.4770 | 0.0 | 0.4770 |
0.0199 | 48.0 | 8256 | 0.1850 | 0.2317 | 0.4634 | 0.4634 | nan | 0.4634 | 0.0 | 0.4634 |
0.0202 | 49.0 | 8428 | 0.1872 | 0.2336 | 0.4672 | 0.4672 | nan | 0.4672 | 0.0 | 0.4672 |
0.0181 | 50.0 | 8600 | 0.1803 | 0.2405 | 0.4810 | 0.4810 | nan | 0.4810 | 0.0 | 0.4810 |
0.0157 | 51.0 | 8772 | 0.1874 | 0.2349 | 0.4697 | 0.4697 | nan | 0.4697 | 0.0 | 0.4697 |
0.0162 | 52.0 | 8944 | 0.1889 | 0.2332 | 0.4665 | 0.4665 | nan | 0.4665 | 0.0 | 0.4665 |
0.0178 | 53.0 | 9116 | 0.1948 | 0.2357 | 0.4715 | 0.4715 | nan | 0.4715 | 0.0 | 0.4715 |
0.0166 | 54.0 | 9288 | 0.1911 | 0.2333 | 0.4666 | 0.4666 | nan | 0.4666 | 0.0 | 0.4666 |
0.0193 | 55.0 | 9460 | 0.1959 | 0.2306 | 0.4611 | 0.4611 | nan | 0.4611 | 0.0 | 0.4611 |
0.0199 | 56.0 | 9632 | 0.1999 | 0.2330 | 0.4659 | 0.4659 | nan | 0.4659 | 0.0 | 0.4659 |
0.0177 | 57.0 | 9804 | 0.1943 | 0.2319 | 0.4639 | 0.4639 | nan | 0.4639 | 0.0 | 0.4639 |
0.019 | 58.0 | 9976 | 0.1926 | 0.2327 | 0.4653 | 0.4653 | nan | 0.4653 | 0.0 | 0.4653 |
0.0187 | 58.14 | 10000 | 0.1918 | 0.2329 | 0.4658 | 0.4658 | nan | 0.4658 | 0.0 | 0.4658 |
框架版本
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
📄 许可证
该项目采用其他许可证。
信息表格
属性 | 详情 |
---|---|
模型类型 | 基于nvidia/mit-b5微调的图像分割模型 |
训练数据 | rishitunu/ecc_crackdetector_dataset_main数据集 |
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg是一种基于文本与图像提示的图像分割模型,支持零样本和单样本图像分割任务。
图像分割
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
其他
BRIA RMBG v1.4 是一款先进的背景移除模型,专为高效分离各类图像的前景与背景而设计,适用于非商业用途。
图像分割
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
其他
BRIA AI开发的最新背景移除模型,能有效分离各类图像的前景与背景,适合大规模商业内容创作场景。
图像分割
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
基于ATR数据集微调的SegFormer模型,用于服装和人体分割
图像分割
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM是一个能够通过输入提示(如点或框)生成高质量对象掩码的视觉模型,支持零样本分割任务
图像分割
Transformers 其他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet是一个用于高分辨率二分图像分割的深度学习模型,通过双边参考网络实现精确的图像分割。
图像分割
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
其他
SegFormer是一种基于Transformer的语义分割模型,在ADE20K数据集上进行了微调,适用于图像分割任务。
图像分割
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM是一个能够通过输入提示点或边界框生成高质量物体掩膜的视觉模型,具备零样本迁移能力。
图像分割
Transformers 其他

S
facebook
455.43k
28
Face Parsing
基于nvidia/mit-b5微调的语义分割模型,用于面部解析任务
图像分割
Transformers 英语

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM是一个能够根据输入提示生成高质量对象掩码的视觉模型,支持零样本迁移到新任务
图像分割
Transformers 其他

S
facebook
324.78k
163
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98