🚀 Segformer模型卡片
Segformer是一個用於圖像分割的模型,藉助該模型可以實現對圖像中不同對象的精準分割,在計算機視覺領域有著廣泛的應用。
🚀 快速開始
加載預訓練模型
點擊下面的按鈕在Colab中打開示例:

安裝依賴
pip install -U segmentation_models_pytorch albumentations
運行推理
import torch
import requests
import numpy as np
import albumentations as A
import segmentation_models_pytorch as smp
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "smp-hub/segformer-b3-1024x1024-city-160k"
model = smp.from_pretrained(checkpoint).eval().to(device)
preprocessing = A.Compose.from_pretrained(checkpoint)
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
np_image = np.array(image)
normalized_image = preprocessing(image=np_image)["image"]
input_tensor = torch.as_tensor(normalized_image)
input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output_mask = model(input_tensor)
mask = torch.nn.functional.interpolate(
output_mask, size=(image.height, image.width), mode="bilinear", align_corners=False
)
mask = mask.argmax(1).cpu().numpy()
📦 安裝指南
安裝必要的依賴庫,命令如下:
pip install -U segmentation_models_pytorch albumentations
💻 使用示例
基礎用法
import torch
import requests
import numpy as np
import albumentations as A
import segmentation_models_pytorch as smp
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "smp-hub/segformer-b3-1024x1024-city-160k"
model = smp.from_pretrained(checkpoint).eval().to(device)
preprocessing = A.Compose.from_pretrained(checkpoint)
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
np_image = np.array(image)
normalized_image = preprocessing(image=np_image)["image"]
input_tensor = torch.as_tensor(normalized_image)
input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output_mask = model(input_tensor)
mask = torch.nn.functional.interpolate(
output_mask, size=(image.height, image.width), mode="bilinear", align_corners=False
)
mask = mask.argmax(1).cpu().numpy()
🔧 技術細節
模型初始化參數
model_init_params = {
"encoder_name": "mit_b3",
"encoder_depth": 5,
"encoder_weights": None,
"decoder_segmentation_channels": 768,
"in_channels": 3,
"classes": 19,
"activation": None,
"aux_params": None
}
數據集
數據集名稱:Cityscapes
📚 詳細文檔
- 庫:https://github.com/qubvel/segmentation_models.pytorch
- 文檔:https://smp.readthedocs.io/en/latest/
📄 許可證
許可證信息:https://github.com/NVlabs/SegFormer/blob/master/LICENSE
本模型已使用 PytorchModelHubMixin 推送到模型中心。