🚀 ViT-L-16-SigLIP2-512模型卡片
本模型是一個基於WebLI數據集訓練的SigLIP 2視覺語言模型,可用於零樣本圖像分類任務。它從Big Vision的原始JAX檢查點轉換而來,適用於OpenCLIP庫。
🚀 快速開始
模型使用示例
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-L-16-SigLIP2-512')
tokenizer = get_tokenizer('hf-hub:timm/ViT-L-16-SigLIP2-512')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [100 * round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
✨ 主要特性
- 基於WebLI數據集訓練的SigLIP 2視覺語言模型。
- 可用於對比圖像文本和零樣本圖像分類任務。
- 從原始JAX檢查點轉換而來,適用於OpenCLIP庫。
📚 詳細文檔
模型詳情
- 模型類型:對比圖像文本、零樣本圖像分類。
- 原始倉庫:https://github.com/google-research/big_vision
- 訓練數據集:WebLI
- 相關論文:
- SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features: https://arxiv.org/abs/2502.14786
- Sigmoid loss for language image pre-training: https://arxiv.org/abs/2303.15343
📄 許可證
本模型使用的許可證為Apache-2.0。
📚 引用信息
@article{tschannen2025siglip,
title={SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features},
author={Tschannen, Michael and Gritsenko, Alexey and Wang, Xiao and Naeem, Muhammad Ferjad and Alabdulmohsin, Ibrahim and Parthasarathy, Nikhil and Evans, Talfan and Beyer, Lucas and Xia, Ye and Mustafa, Basil and H'enaff, Olivier and Harmsen, Jeremiah and Steiner, Andreas and Zhai, Xiaohua},
year={2025},
journal={arXiv preprint arXiv:2502.14786}
}
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}