Vit Large Patch16 Siglip 256.v2 Webli
Apache-2.0
基於SigLIP 2架構的視覺Transformer模型,專為圖像特徵提取設計,訓練於webli數據集
圖像分類
Transformers

V
timm
525
0
Vit Base Patch16 Siglip 224.v2 Webli
Apache-2.0
基於SigLIP 2的ViT模型,專注於圖像特徵提取,使用webli數據集訓練
文本生成圖像
Transformers

V
timm
1,992
0
Vit Gopt 16 SigLIP2 384
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類
文本生成圖像
V
timm
1,953
1
Vit Gopt 16 SigLIP2 256
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,適用於零樣本圖像分類任務。
文本生成圖像
V
timm
43.20k
0
Vit SO400M 16 SigLIP2 512
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,適用於零樣本圖像分類任務
文本生成圖像
V
timm
1,191
4
Vit SO400M 16 SigLIP2 384
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務。
文本生成圖像
V
timm
106.30k
2
Vit SO400M 16 SigLIP2 256
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類
文本生成圖像
V
timm
998
0
Vit SO400M 14 SigLIP2 378
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務
文本生成圖像
V
timm
1,596
1
Vit L 16 SigLIP2 512
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務
文本生成圖像
V
timm
147
2
Vit L 16 SigLIP2 256
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類
文本生成圖像
V
timm
888
0
Vit B 16 SigLIP2 512
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務
文本生成圖像
V
timm
1,442
1
Vit B 16 SigLIP2
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,適用於零樣本圖像分類任務。
文本生成圖像
V
timm
11.26k
0
Vit B 32 SigLIP2 256
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務
文本生成圖像
V
timm
691
0
Vit B 16 SigLIP2 256
Apache-2.0
基於WebLI數據集訓練的SigLIP 2視覺語言模型,支持零樣本圖像分類任務
文本生成圖像
V
timm
10.32k
4
Vit SO400M 14 SigLIP 384
Apache-2.0
基於WebLI數據集訓練的SigLIP(語言-圖像預訓練的Sigmoid損失)模型,適用於零樣本圖像分類任務。
文本生成圖像
V
timm
158.84k
79
Vit SO400M 14 SigLIP
Apache-2.0
一個在WebLI數據集上訓練的SigLIP(用於語言-圖像預訓練的Sigmoid損失)模型,適用於零樣本圖像分類任務。
文本生成圖像
V
timm
79.55k
17
Vit L 16 SigLIP 384
Apache-2.0
基於WebLI數據集訓練的SigLIP(Sigmoid Loss for Language-Image Pre-training)模型,用於零樣本圖像分類任務。
文本生成圖像
V
timm
3,008
27
Vit B 16 SigLIP 256
Apache-2.0
一個在WebLI數據集上訓練的SigLIP(語言-圖像預訓練的Sigmoid損失)模型,適用於零樣本圖像分類任務。
文本生成圖像
V
timm
17.15k
1
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98