🚀 ViT - gopt - 16 - SigLIP2 - 384模型卡片
本模型是基於WebLI數據集訓練的SigLIP 2視覺 - 語言模型,可用於零樣本圖像分類任務。它從原始的JAX檢查點轉換而來,適用於OpenCLIP庫。
🚀 快速開始
模型使用示例
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-gopt-16-SigLIP2-384')
tokenizer = get_tokenizer('hf-hub:timm/ViT-gopt-16-SigLIP2-384')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [100 * round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
✨ 主要特性
- 基於SigLIP 2架構,具有更好的語義理解、定位和密集特徵。
- 可用於零樣本圖像分類任務。
📚 詳細文檔
模型詳情
本模型是一個在WebLI數據集上訓練的SigLIP 2視覺 - 語言模型,已從Big Vision中的原始JAX檢查點轉換為適用於OpenCLIP的版本。
模型信息
📄 許可證
本模型採用Apache 2.0許可證。
📖 引用
@article{tschannen2025siglip,
title={SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features},
author={Tschannen, Michael and Gritsenko, Alexey and Wang, Xiao and Naeem, Muhammad Ferjad and Alabdulmohsin, Ibrahim and Parthasarathy, Nikhil and Evans, Talfan and Beyer, Lucas and Xia, Ye and Mustafa, Basil and H'enaff, Olivier and Harmsen, Jeremiah and Steiner, Andreas and Zhai, Xiaohua},
year={2025},
journal={arXiv preprint arXiv:2502.14786}
}
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}