Deepseek R1 GGUF
模型概述
基於DeepSeek-R1的量化版本,通過Unsloth的1.58-bit + 2-bit動態量化技術實現高效推理,特別優化了MoE層量化策略
模型特點
動態混合量化
採用1.58-bit + 2-bit動態量化技術,對MoE層進行選擇性量化,精度優於標準1-bit/2-bit方案
多版本量化支持
提供1.58bit到2.51bit四種量化方案,平衡磁盤佔用與推理精度
GPU加速優化
支持通過llama.cpp進行GPU層卸載,在RTX 4090等設備上實現加速推理
模型能力
英語文本生成
指令跟隨
代碼理解與生成
使用案例
開發輔助
代碼生成
根據自然語言描述生成Python等編程語言代碼
示例展示Flappy Bird遊戲實現代碼生成能力
內容創作
技術文檔翻譯
中英技術文檔的互譯處理
支持通過特定提示模板實現結構化翻譯
🚀 DeepSeek-R1
DeepSeek-R1 是第一代推理模型,在數學、代碼和推理任務上表現出色,性能可與 OpenAI-o1 相媲美。本項目開源了相關模型,為研究社區提供支持。
🚀 快速開始
運行模型
在本地運行 DeepSeek-R1 系列模型前,請先查看使用建議部分。
- DeepSeek-R1 模型:更多關於在本地運行 DeepSeek-R1 的信息,請訪問 DeepSeek-V3 倉庫。
- DeepSeek-R1-Distill 模型:可以像使用 Qwen 或 Llama 模型一樣使用 DeepSeek-R1-Distill 模型。
下載模型
# pip install huggingface_hub hf_transfer
# import os # Optional for faster downloading
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "unsloth/DeepSeek-R1-GGUF",
local_dir = "DeepSeek-R1-GGUF",
allow_patterns = ["*UD-IQ1_S*"], # Select quant type UD-IQ1_S for 1.58bit
)
示例運行
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
✨ 主要特性
模型創新
- DeepSeek-R1-Zero:通過大規模強化學習(RL)訓練,無需監督微調(SFT)作為初步步驟,在推理方面表現出色,具有自我驗證、反思和生成長思維鏈等能力。
- DeepSeek-R1:在 RL 之前加入冷啟動數據,解決了 DeepSeek-R1-Zero 存在的問題,如無盡重複、可讀性差和語言混合等,在數學、代碼和推理任務上達到了與 OpenAI-o1 相當的性能。
模型開源
開源了 DeepSeek-R1-Zero、DeepSeek-R1 以及六個基於 Llama 和 Qwen 從 DeepSeek-R1 蒸餾得到的密集模型,其中 DeepSeek-R1-Distill-Qwen-32B 在各種基準測試中優於 OpenAI-o1-mini,為密集模型取得了新的最優結果。
評估表現
在多個基準測試中表現優異,如在數學、代碼和推理任務上的評估結果顯示,DeepSeek R1 在多個指標上超過了其他模型。
📦 安裝指南
安裝依賴
apt-get update
apt-get install build-essential cmake curl libcurl4-openssl-dev -y
git clone https://github.com/ggerganov/llama.cpp
cmake llama.cpp -B llama.cpp/build \
-DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON
cmake --build llama.cpp/build --config Release -j --clean-first --target llama-quantize llama-cli llama-gguf-split
cp llama.cpp/build/bin/llama-* llama.cpp
下載模型
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "unsloth/DeepSeek-R1-GGUF",
local_dir = "DeepSeek-R1-GGUF",
allow_patterns = ["*UD-IQ1_S*"], # Select quant type UD-IQ1_S for 1.58bit
)
💻 使用示例
基礎用法
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
高級用法
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--n-gpu-layers 7 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
📚 詳細文檔
模型概述
後訓練:在基礎模型上進行大規模強化學習
- 直接對基礎模型應用強化學習(RL),無需監督微調(SFT)作為初步步驟,開發出 DeepSeek-R1-Zero,該模型展示了自我驗證、反思和生成長思維鏈等能力。
- 引入開發 DeepSeek-R1 的管道,包括兩個 RL 階段和兩個 SFT 階段,旨在發現更好的推理模式並與人類偏好對齊。
蒸餾:小模型也能強大
- 證明了可以將大模型的推理模式蒸餾到小模型中,開源的 DeepSeek-R1 及其 API 將有助於未來蒸餾出更好的小模型。
- 使用 DeepSeek-R1 生成的樣本對開源模型進行微調,得到 DeepSeek-R1-Distill 模型,並對其配置和分詞器進行了微調。
模型下載
DeepSeek-R1 模型
模型名稱 | 總參數數量 | 激活參數數量 | 上下文長度 | 下載鏈接 |
---|---|---|---|---|
DeepSeek-R1-Zero | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1 | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1-Distill 模型
模型名稱 | 基礎模型 | 下載鏈接 |
---|---|---|
DeepSeek-R1-Distill-Qwen-1.5B | Qwen2.5-Math-1.5B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-Math-7B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-8B | Llama-3.1-8B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-14B | Qwen2.5-14B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-32B | Qwen2.5-32B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-70B | Llama-3.3-70B-Instruct | 🤗 HuggingFace |
評估結果
DeepSeek-R1 評估
類別 | 基準測試(指標) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 |
---|---|---|---|---|---|---|---|
架構 | - | - | MoE | - | - | MoE | |
激活參數數量 | - | - | 37B | - | - | 37B | |
總參數數量 | - | - | 671B | - | - | 671B | |
英語 | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | 91.8 | 90.8 |
MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | 92.9 | |
MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | 84.0 | |
DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | 92.2 | |
IF-Eval (Prompt Strict) | 86.5 | 84.3 | 86.1 | 84.8 | - | 83.3 | |
GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | 75.7 | 71.5 | |
SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | 47.0 | 30.1 | |
FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | 82.5 | |
AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | 87.6 | |
ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | 92.3 | |
代碼 | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | 65.9 |
Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | 96.6 | 96.3 | |
Codeforces (Rating) | 717 | 759 | 1134 | 1820 | 2061 | 2029 | |
SWE Verified (Resolved) | 50.8 | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 | |
Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | 61.7 | 53.3 | |
數學 | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | 79.8 |
MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | 97.3 | |
CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | 78.8 | |
中文 | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | 92.8 |
C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | 91.8 | |
C-SimpleQA (Correct) | 55.4 | 58.7 | 68.0 | 40.3 | - | 63.7 |
蒸餾模型評估
模型 | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
---|---|---|---|---|---|---|
GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | 1820 |
QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
DeepSeek-R1-Distill-Qwen-32B | 72.6 | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
DeepSeek-R1-Distill-Llama-70B | 70.0 | 86.7 | 94.5 | 65.2 | 57.5 | 1633 |
聊天網站與 API 平臺
- 可以在 DeepSeek 的官方網站 chat.deepseek.com 上與 DeepSeek-R1 聊天,並切換“DeepThink”按鈕。
- 還在 DeepSeek 平臺 platform.deepseek.com 上提供了與 OpenAI 兼容的 API。
本地運行方法
DeepSeek-R1 模型
請訪問 DeepSeek-V3 倉庫獲取更多關於在本地運行 DeepSeek-R1 的信息。
DeepSeek-R1-Distill 模型
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2
使用建議
- 將溫度設置在 0.5 - 0.7 範圍內(建議 0.6),以防止無盡重複或輸出不連貫。
- 避免添加系統提示,所有指令應包含在用戶提示中。
- 對於數學問題,建議在提示中包含指令,如:“請逐步推理,並將最終答案放在 \boxed{} 內”。
- 評估模型性能時,建議進行多次測試並取平均值。
🔧 技術細節
後訓練:在基礎模型上進行大規模強化學習
直接對基礎模型應用強化學習(RL),無需監督微調(SFT)作為初步步驟,開發出 DeepSeek-R1-Zero。該模型展示了自我驗證、反思和生成長思維鏈等能力,是第一個通過純 RL 激勵大語言模型推理能力的開放研究。
蒸餾:小模型也能強大
證明了可以將大模型的推理模式蒸餾到小模型中,使用 DeepSeek-R1 生成的樣本對開源模型進行微調,得到 DeepSeek-R1-Distill 模型,並對其配置和分詞器進行了微調。
📄 許可證
本代碼倉庫和模型權重遵循 MIT 許可證。DeepSeek-R1 系列支持商業使用,允許進行任何修改和衍生作品,包括但不限於蒸餾訓練其他大語言模型。請注意:
- DeepSeek-R1-Distill-Qwen-1.5B、DeepSeek-R1-Distill-Qwen-7B、DeepSeek-R1-Distill-Qwen-14B 和 DeepSeek-R1-Distill-Qwen-32B 源自 Qwen-2.5 系列,原許可證為 Apache 2.0 許可證,現在使用 DeepSeek-R1 精心策劃的 800k 樣本進行微調。
- DeepSeek-R1-Distill-Llama-8B 源自 Llama3.1-8B-Base,原許可證為 llama3.1 許可證。
- DeepSeek-R1-Distill-Llama-70B 源自 Llama3.3-70B-Instruct,原許可證為 llama3.3 許可證。
引用
@misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
author={DeepSeek-AI and Daya Guo and Dejian Yang and Haowei Zhang and Junxiao Song and Ruoyu Zhang and Runxin Xu and Qihao Zhu and Shirong Ma and Peiyi Wang and Xiao Bi and Xiaokang Zhang and Xingkai Yu and Yu Wu and Z. F. Wu and Zhibin Gou and Zhihong Shao and Zhuoshu Li and Ziyi Gao and Aixin Liu and Bing Xue and Bingxuan Wang and Bochao Wu and Bei Feng and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Qu and Hui Li and Jianzhong Guo and Jiashi Li and Jiawei Wang and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and J. L. Cai and Jiaqi Ni and Jian Liang and Jin Chen and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Liang Zhao and Litong Wang and Liyue Zhang and Lei Xu and Leyi Xia and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Meng Li and Miaojun Wang and Mingming Li and Ning Tian and Panpan Huang and Peng Zhang and Qiancheng Wang and Qinyu Chen and Qiushi Du and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and R. J. Chen and R. L. Jin and Ruyi Chen and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shengfeng Ye and Shiyu Wang and Shuiping Yu and Shunfeng Zhou and Shuting Pan and S. S. Li and Shuang Zhou and Shaoqing Wu and Shengfeng Ye and Tao Yun and Tian Pei and Tianyu Sun and T. Wang and Wangding Zeng and Wanjia Zhao and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and W. L. Xiao and Wei An and Xiaodong Liu and Xiaohan Wang and Xiaokang Chen and Xiaotao Nie and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and X. Q. Li and Xiangyue Jin and Xiaojin Shen and Xiaosha Chen and Xiaowen Sun and Xiaoxiang Wang and Xinnan Song and Xinyi Zhou and Xianzu Wang and Xinxia Shan and Y. K. Li and Y. Q. Wang and Y. X. Wei and Yang Zhang and Yanhong Xu and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Wang and Yi Yu and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yuan Ou and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yunfan Xiong and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Y. X. Zhu and Yanhong Xu and Yanping Huang and Yaohui Li and Yi Zheng and Yuchen Zhu and Yunxian Ma and Ying Tang and Yukun Zha and Yuting Yan and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhicheng Ma and Zhigang Yan and Zhiyu Wu and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Zizheng Pan and Zhen Huang and Zhipeng Xu and Zhongyu Zhang and Zhen Zhang},
year={2025},
eprint={2501.12948},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.12948},
}
特殊感謝
非常感謝 DeepSeek 團隊創建併發布這些模型。
聯繫我們
如果您有任何問題,請提出問題或通過 service@deepseek.com 聯繫我們。
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98