🚀 llama-7b-v1-Receipt-Key-Extraction
llama-7b-v1-Receipt-Key-Extraction是一個基於LLamA v1的70億參數模型,主要用於英文和阿拉伯文的收據關鍵信息提取研究。
🚀 快速開始
模型使用
該模型僅用於英文和阿拉伯文收據中物品的關鍵信息提取研究。
開始使用模型
使用以下代碼開始使用該模型:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
checkpoint = "abdoelsayed/llama-7b-v1-Receipt-Key-Extraction"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, model_max_length=512,
padding_side="right",
use_fast=False,)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
def generate_response(instruction, input_text, max_new_tokens=100, temperature=0.1, num_beams=4 ,top_k=40):
prompt = f"Below is an instruction that describes a task, paired with an input that provides further context.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
)
with torch.no_grad():
outputs = model.generate(input_ids,generation_config=generation_config, max_new_tokens=max_new_tokens)
outputs = tokenizer.decode(outputs.sequences[0])
return output.split("### Response:")[-1].strip().replace("</s>","")
instruction = "Extract the class, Brand, Weight, Number of units, Size of units, Price, T.Price, Pack, Unit from the following sentence"
input_text = "Americana Okra zero 400 gm"
response = generate_response(instruction, input_text)
print(response)
📚 詳細文檔
引用方式
請使用以下格式引用該模型:
@misc{abdallah2023amurd,
title={AMuRD: Annotated Multilingual Receipts Dataset for Cross-lingual Key Information Extraction and Classification},
author={Abdelrahman Abdallah and Mahmoud Abdalla and Mohamed Elkasaby and Yasser Elbendary and Adam Jatowt},
year={2023},
eprint={2309.09800},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📄 許可證
本模型使用llama2許可證。
📋 模型信息