T5 Vietnamese Summarization
基於T5架構的越南語文本摘要生成模型,在未知數據集上微調,支持生成簡潔的越南語摘要。
下載量 510
發布時間 : 9/17/2023
模型概述
該模型專門用於越南語文本的自動摘要生成任務,能夠從長文本中提取關鍵信息生成簡潔摘要。
模型特點
越南語優化
專門針對越南語文本進行優化的摘要生成模型
可控生成長度
支持通過參數控制生成摘要的最小和最大長度
中等性能表現
在評估集上達到Rouge1 0.47的分數,適合一般摘要需求
模型能力
越南語文本理解
自動摘要生成
關鍵信息提取
使用案例
新聞摘要
經濟新聞摘要
將長篇經濟新聞報道濃縮為簡短摘要
如示例所示,能有效提取經濟學家觀點等關鍵信息
金融分析
市場動態摘要
總結股市波動和政策影響的關鍵信息
如示例所示,能捕捉政策變化與市場反應的關聯
🚀 T5越南語文本摘要模型
本模型專注于越南語文本摘要任務,基於預訓練模型進行微調,能有效處理越南語文本,為用戶提供高質量的文本摘要服務。
🚀 快速開始
此模型是 pengold/t5-vietnamese-summarization 在未知數據集上微調後的版本。以下是推理時的參數設置:
min_length
: 5max_length
: 150
推理示例
- 示例 1
summarize: Thảo luận phiên chuyên đề 2 về năng suất lao động tại Diễn đàn
Kinh tế - Xã hội 2023 ngày 19/9, Chuyên gia Kinh tế quốc tế Jonathan Pincus
(Tổ chức phát triển Liên hợp quốc tại Việt Nam) nói việc tăng năng suất lao
động cần nhìn nhận trong quá trình dài hơi thay vì trong giai đoạn ngắn. Rất
khó để một quốc gia có thể tăng trưởng năng suất nhanh trong một giai đoạn
dài, đó chính là bẫy năng suất trung bình, ông Pincus đúc rút, gọi đây là
mối đe dọa lớn.
- 示例 2
summarize: Đây là nỗ lực của chính phủ nhằm giảm đi cơn sốt trên
thị trường chứng khoán. Quyết định này có tác động ngay lập tức.
Chỉ số chính của thị trường chứng khoán Thượng Hải khi đóng cửa
giảm 281.8 điểm, ở mức 4053.1. Một số phân tích gia nói việc cổ
phiếu sụt giá cũng chỉ mang tính tạm thời mà thôi. Ngân hàng Thế
giới giờ đây dự đoán nền kinh tế Trung Quốc sẽ tăng 10.4% trong năm
này. Lúc trước, Ngân hàng Thế giới dự đoán kinh tế Trung Quốc sẽ
tăng 9.6% trong năm 2007. Với việc Bắc Kinh đưa ra hành động nhằm
giảm nhiệt thị trường chứng khoán vào hôm thứ Tư, thuế đối với
cổ phiếu giao dịch giờ đây tăng từ 0.1% lên 0.3%. Tính đến phiên
đóng cửa vào hôm thứ Ba, chỉ số cổ phiếu Thượng Hải đã tăng 62%
trong năm nay, và có giá trị tăng gấp bốn lần kể từ đầu năm 2006.
Ông Thomas Gruener từ Landesbank Berlin nói: “Hành động này có thể
tạo ra việc điều chỉnh giá nhưng nhìn chung chúng tôi không cho là
xu hướng sẽ thay đổi”. Tuy nhiên, việc cổ phiếu Thượng Hải sụt giá
có thể sẽ tác động tới tâm lý của các thị trường chứng khoán
châu Âu. Thế nên các chỉ số chứng khoán tại châu Âu khi mở cửa hôm
thứ Tư đều hạ.
📚 詳細文檔
評估集結果
該模型在評估集上取得了以下結果:
- Loss:4.6288
- Rouge1:0.4728
- Rouge2:0.1669
- Rougel:0.3049
- Rougelsum:0.3049
- Gen Len:18.7458
訓練超參數
訓練過程中使用了以下超參數:
參數 | 值 |
---|---|
learning_rate |
2e-05 |
train_batch_size |
16 |
eval_batch_size |
16 |
seed |
42 |
optimizer |
Adam with betas=(0.9,0.999) and epsilon=1e-08 |
lr_scheduler_type |
linear |
num_epochs |
70 |
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | Rouge1 | Rouge2 | Rougel | Rougelsum | 生成長度 |
---|---|---|---|---|---|---|---|---|
5.2487 | 1.0 | 2007 | 5.0028 | 0.4671 | 0.1595 | 0.2994 | 0.2994 | 18.7618 |
5.217 | 2.0 | 4014 | 4.9802 | 0.4639 | 0.1569 | 0.2984 | 0.2983 | 18.7747 |
5.2191 | 3.0 | 6021 | 4.9685 | 0.4644 | 0.1594 | 0.2989 | 0.2989 | 18.7613 |
5.2254 | 4.0 | 8028 | 4.9477 | 0.4648 | 0.1586 | 0.2988 | 0.2987 | 18.7458 |
5.1735 | 5.0 | 10035 | 4.9366 | 0.4654 | 0.1593 | 0.2988 | 0.2987 | 18.761 |
5.1735 | 6.0 | 12042 | 4.9214 | 0.4676 | 0.1611 | 0.3004 | 0.3004 | 18.78 |
5.1653 | 7.0 | 14049 | 4.9095 | 0.4681 | 0.1616 | 0.3007 | 0.3007 | 18.7523 |
5.1154 | 8.0 | 16056 | 4.8971 | 0.4664 | 0.1598 | 0.3002 | 0.3001 | 18.7655 |
5.1232 | 9.0 | 18063 | 4.8882 | 0.4683 | 0.1612 | 0.3008 | 0.3008 | 18.761 |
5.0995 | 10.0 | 20070 | 4.8758 | 0.4709 | 0.1618 | 0.3021 | 0.302 | 18.7518 |
5.1012 | 11.0 | 22077 | 4.8689 | 0.4685 | 0.1616 | 0.3011 | 0.3009 | 18.7665 |
5.0916 | 12.0 | 24084 | 4.8486 | 0.4695 | 0.1623 | 0.3024 | 0.3023 | 18.7655 |
5.0559 | 13.0 | 26091 | 4.8409 | 0.4699 | 0.1631 | 0.3024 | 0.3023 | 18.7849 |
5.0633 | 14.0 | 28098 | 4.8326 | 0.4705 | 0.1613 | 0.302 | 0.302 | 18.7583 |
5.0335 | 15.0 | 30105 | 4.8243 | 0.4696 | 0.1612 | 0.3023 | 0.3022 | 18.7638 |
5.0271 | 16.0 | 32112 | 4.8046 | 0.4691 | 0.1618 | 0.3022 | 0.3022 | 18.7518 |
5.0045 | 17.0 | 34119 | 4.8060 | 0.4708 | 0.1629 | 0.3029 | 0.3028 | 18.7568 |
5.0072 | 18.0 | 36126 | 4.7945 | 0.4702 | 0.1633 | 0.3024 | 0.3023 | 18.776 |
4.9954 | 19.0 | 38133 | 4.7894 | 0.47 | 0.1639 | 0.3022 | 0.3021 | 18.7785 |
4.9994 | 20.0 | 40140 | 4.7773 | 0.4692 | 0.1625 | 0.3028 | 0.3027 | 18.7623 |
4.953 | 21.0 | 42147 | 4.7641 | 0.4682 | 0.162 | 0.3015 | 0.3014 | 18.757 |
4.9526 | 22.0 | 44154 | 4.7600 | 0.4703 | 0.1626 | 0.3023 | 0.3023 | 18.7625 |
4.9571 | 23.0 | 46161 | 4.7592 | 0.4698 | 0.1627 | 0.3025 | 0.3025 | 18.781 |
4.9324 | 24.0 | 48168 | 4.7511 | 0.4697 | 0.1631 | 0.3022 | 0.3021 | 18.769 |
4.9323 | 25.0 | 50175 | 4.7433 | 0.4723 | 0.1649 | 0.304 | 0.3039 | 18.7757 |
4.9381 | 26.0 | 52182 | 4.7378 | 0.4703 | 0.1629 | 0.3026 | 0.3026 | 18.7782 |
4.9288 | 27.0 | 54189 | 4.7454 | 0.4709 | 0.1627 | 0.3026 | 0.3026 | 18.7777 |
4.9131 | 28.0 | 56196 | 4.7222 | 0.471 | 0.1652 | 0.3037 | 0.3037 | 18.782 |
4.9005 | 29.0 | 58203 | 4.7241 | 0.4719 | 0.1638 | 0.3039 | 0.3038 | 18.778 |
4.9051 | 30.0 | 60210 | 4.7225 | 0.4715 | 0.1647 | 0.3037 | 0.3036 | 18.7668 |
4.8816 | 31.0 | 62217 | 4.7181 | 0.4701 | 0.1631 | 0.3029 | 0.3029 | 18.7416 |
4.8687 | 32.0 | 64224 | 4.7061 | 0.4705 | 0.1643 | 0.3032 | 0.3031 | 18.7625 |
4.8935 | 33.0 | 66231 | 4.7063 | 0.4697 | 0.1632 | 0.3028 | 0.3028 | 18.7458 |
4.88 | 34.0 | 68238 | 4.6984 | 0.471 | 0.164 | 0.3039 | 0.3039 | 18.7663 |
4.8473 | 35.0 | 70245 | 4.6934 | 0.4699 | 0.1636 | 0.3034 | 0.3033 | 18.7531 |
4.8613 | 36.0 | 72252 | 4.6863 | 0.4705 | 0.1631 | 0.303 | 0.303 | 18.7797 |
4.8491 | 37.0 | 74259 | 4.6847 | 0.4703 | 0.1638 | 0.3037 | 0.3037 | 18.78 |
4.8239 | 38.0 | 76266 | 4.6804 | 0.4707 | 0.1632 | 0.3032 | 0.3032 | 18.7802 |
4.8767 | 39.0 | 78273 | 4.6788 | 0.4703 | 0.1637 | 0.3027 | 0.3026 | 18.7446 |
4.8402 | 40.0 | 80280 | 4.6700 | 0.4699 | 0.1633 | 0.3028 | 0.3028 | 18.7516 |
4.8261 | 41.0 | 82287 | 4.6660 | 0.4699 | 0.1633 | 0.3029 | 0.3028 | 18.7369 |
4.8193 | 42.0 | 84294 | 4.6693 | 0.4711 | 0.1654 | 0.3039 | 0.3038 | 18.7421 |
4.8161 | 43.0 | 86301 | 4.6636 | 0.4707 | 0.1642 | 0.303 | 0.303 | 18.7595 |
4.832 | 44.0 | 88308 | 4.6619 | 0.4708 | 0.1646 | 0.3036 | 0.3035 | 18.7423 |
4.8304 | 45.0 | 90315 | 4.6575 | 0.4711 | 0.1651 | 0.3038 | 0.3037 | 18.7354 |
4.7958 | 46.0 | 92322 | 4.6543 | 0.4711 | 0.165 | 0.3032 | 0.3032 | 18.7189 |
4.804 | 47.0 | 94329 | 4.6541 | 0.4711 | 0.1656 | 0.3037 | 0.3036 | 18.7396 |
4.7968 | 48.0 | 96336 | 4.6495 | 0.4709 | 0.165 | 0.3034 | 0.3034 | 18.7411 |
4.7912 | 49.0 | 98343 | 4.6471 | 0.4718 | 0.1655 | 0.3041 | 0.3042 | 18.7361 |
4.7721 | 50.0 | 100350 | 4.6469 | 0.4723 | 0.1667 | 0.3047 | 0.3047 | 18.7309 |
4.7828 | 51.0 | 102357 | 4.6476 | 0.4712 | 0.1656 | 0.3044 | 0.3045 | 18.7446 |
4.7934 | 52.0 | 104364 | 4.6453 | 0.4707 | 0.1645 | 0.3035 | 0.3035 | 18.7329 |
4.7724 | 53.0 | 106371 | 4.6425 | 0.4715 | 0.1657 | 0.304 | 0.304 | 18.7403 |
4.7804 | 54.0 | 108378 | 4.6362 | 0.4711 | 0.1658 | 0.3041 | 0.3041 | 18.7488 |
4.792 | 55.0 | 110385 | 4.6363 | 0.4706 | 0.1653 | 0.3038 | 0.3038 | 18.7281 |
4.7528 | 56.0 | 112392 | 4.6357 | 0.4724 | 0.1667 | 0.3044 | 0.3044 | 18.7463 |
4.7849 | 57.0 | 114399 | 4.6346 | 0.472 | 0.1661 | 0.3041 | 0.304 | 18.7431 |
4.7618 | 58.0 | 116406 | 4.6332 | 0.472 | 0.167 | 0.3046 | 0.3046 | 18.7336 |
4.7841 | 59.0 | 118413 | 4.6287 | 0.4716 | 0.1664 | 0.3043 | 0.3043 | 18.7369 |
4.7764 | 60.0 | 120420 | 4.6316 | 0.473 | 0.1666 | 0.3048 | 0.3047 | 18.7548 |
4.7504 | 61.0 | 122427 | 4.6276 | 0.4721 | 0.1671 | 0.3043 | 0.3044 | 18.7371 |
4.7629 | 62.0 | 124434 | 4.6250 | 0.4726 | 0.167 | 0.3046 | 0.3046 | 18.76 |
4.7764 | 63.0 | 126441 | 4.6264 | 0.4725 | 0.1666 | 0.3044 | 0.3044 | 18.7446 |
4.7524 | 64.0 | 128448 | 4.6275 | 0.4719 | 0.166 | 0.3041 | 0.3041 | 18.7428 |
4.7641 | 65.0 | 130455 | 4.6288 | 0.4728 | 0.1669 | 0.3049 | 0.3049 | 18.7458 |
框架版本
- Transformers:4.33.2
- Pytorch:2.0.1+cu117
- Datasets:2.14.5
- Tokenizers:0.13.3
📄 許可證
本模型採用 CC BY 4.0 許可證。
Bart Large Cnn
MIT
基於英語語料預訓練的BART模型,專門針對CNN每日郵報數據集進行微調,適用於文本摘要任務
文本生成 英語
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot是一個基於T5的釋義框架,專為加速訓練自然語言理解(NLU)模型而設計,通過生成高質量釋義實現數據增強。
文本生成
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART是BART模型的蒸餾版本,專門針對文本摘要任務進行了優化,在保持較高性能的同時顯著提升了推理速度。
文本生成 英語
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
基於T5架構的模型,專門用於從摘要文本中提取原子聲明,是摘要事實性評估流程的關鍵組件。
文本生成
Transformers 英語

T
Babelscape
666.36k
9
Unieval Sum
UniEval是一個統一的多維評估器,用於自然語言生成任務的自動評估,支持多個可解釋維度的評估。
文本生成
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
基於PEGASUS架構微調的文本複述模型,能夠生成語義相同但表達不同的句子。
文本生成
Transformers 英語

P
tuner007
209.03k
185
T5 Base Korean Summarization
這是一個基於T5架構的韓語文本摘要模型,專為韓語文本摘要任務設計,通過微調paust/pko-t5-base模型在多個韓語數據集上訓練而成。
文本生成
Transformers 韓語

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS是一種基於Transformer的預訓練模型,專門用於抽象文本摘要任務。
文本生成 英語
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
基於BART-large架構的對話摘要模型,專為SAMSum語料庫微調,適用於生成對話摘要。
文本生成
Transformers 英語

B
philschmid
141.28k
258
Kobart Summarization
MIT
基於KoBART架構的韓語文本摘要模型,能夠生成韓語新聞文章的簡潔摘要。
文本生成
Transformers 韓語

K
gogamza
119.18k
12
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98