T5 Vietnamese Summarization
T5アーキテクチャに基づくベトナム語テキスト要約生成モデルで、未知のデータセットでファインチューニングされており、簡潔なベトナム語要約の生成をサポートします。
ダウンロード数 510
リリース時間 : 9/17/2023
モデル概要
このモデルはベトナム語テキストの自動要約生成タスク専用で、長文からキー情報を抽出して簡潔な要約を生成できます。
モデル特徴
ベトナム語最適化
ベトナム語テキストに特化して最適化された要約生成モデル
生成長制御
パラメータで要約の最小・最大長を制御可能
中程度の性能
評価セットでRouge1 0.47を達成し、一般的な要約ニーズに適しています
モデル能力
ベトナム語テキスト理解
自動要約生成
キー情報抽出
使用事例
ニュース要約
経済ニュース要約
長文の経済ニュース記事を短い要約に凝縮
例に示す通り、経済学者の見解などのキー情報を効果的に抽出可能
金融分析
市場動向要約
株価変動と政策影響のキー情報をまとめる
例に示す通り、政策変化と市場反応の関連性を捉えられる
🚀 t5-vietnamese-summarization
このモデルは、pengold/t5-vietnamese-summarization を未知のデータセットでファインチューニングしたバージョンです。評価セットでは以下の結果を達成しています。
- 損失: 4.6288
- Rouge1: 0.4728
- Rouge2: 0.1669
- Rougel: 0.3049
- Rougelsum: 0.3049
- 生成長: 18.7458
🚀 クイックスタート
このモデルはベトナム語の文章要約に使用できます。以下に推論パラメータの例を示します。
{
"parameters": {
"min_length": 5,
"max_length": 150
}
}
✨ 主な機能
- ベトナム語文章の要約機能を提供します。
- Rouge指標を用いた評価において良好な結果を示します。
📦 インストール
原READMEにインストール手順に関する内容がありませんでしたので、このセクションは省略します。
💻 使用例
基本的な使用法
以下は要約の入力テキストの例です。
{
"text": "summarize: Thảo luận phiên chuyên đề 2 về năng suất lao động tại Diễn đàn Kinh tế - Xã hội 2023 ngày 19/9, Chuyên gia Kinh tế quốc tế Jonathan Pincus (Tổ chức phát triển Liên hợp quốc tại Việt Nam) nói việc tăng năng suất lao động cần nhìn nhận trong quá trình dài hơi thay vì trong giai đoạn ngắn. Rất khó để một quốc gia có thể tăng trưởng năng suất nhanh trong một giai đoạn dài, đó chính là bẫy năng suất trung bình, ông Pincus đúc rút, gọi đây là mối đe dọa lớn.",
"example_title": "Example 1"
}
高度な使用法
複数の入力テキストを用いた要約の例です。
[
{
"text": "summarize: Thảo luận phiên chuyên đề 2 về năng suất lao động tại Diễn đàn Kinh tế - Xã hội 2023 ngày 19/9, Chuyên gia Kinh tế quốc tế Jonathan Pincus (Tổ chức phát triển Liên hợp quốc tại Việt Nam) nói việc tăng năng suất lao động cần nhìn nhận trong quá trình dài hơi thay vì trong giai đoạn ngắn. Rất khó để một quốc gia có thể tăng trưởng năng suất nhanh trong một giai đoạn dài, đó chính là bẫy năng suất trung bình, ông Pincus đúc rút, gọi đây là mối đe dọa lớn.",
"example_title": "Example 1"
},
{
"text": "summarize: Đây là nỗ lực của chính phủ nhằm giảm đi cơn sốt trên thị trường chứng khoán. Quyết định này có tác động ngay lập tức. Chỉ số chính của thị trường chứng khoán Thượng Hải khi đóng cửa giảm 281.8 điểm, ở mức 4053.1. Một số phân tích gia nói việc cổ phiếu sụt giá cũng chỉ mang tính tạm thời mà thôi. Ngân hàng Thế giới giờ đây dự đoán nền kinh tế Trung Quốc sẽ tăng 10.4% trong năm nay. Lúc trước, Ngân hàng Thế giới dự đoán kinh tế Trung Quốc sẽ tăng 9.6% trong năm 2007. Với việc Bắc Kinh đưa ra hành động nhằm giảm nhiệt thị trường chứng khoán vào hôm thứ Tư, thuế đối với cổ phiếu giao dịch giờ đây tăng từ 0.1% lên 0.3%. Tính đến phiên đóng cửa vào hôm thứ Ba, chỉ số cổ phiếu Thượng Hải đã tăng 62% trong năm nay, và có giá trị tăng gấp bốn lần kể từ đầu năm 2006. Ông Thomas Gruener từ Landesbank Berlin nói: “Hành động này có thể tạo ra việc điều chỉnh giá nhưng nhìn chung chúng tôi không cho là xu hướng sẽ thay đổi”. Tuy nhiên, việc cổ phiếu Thượng Hải sụt giá có thể sẽ tác động tới tâm lý của các thị trường chứng khoán châu Âu. Thế nên các chỉ số chứng khoán tại châu Âu khi mở cửa hôm thứ Tư đều hạ.",
"example_title": "Example 2"
}
]
📚 ドキュメント
モデルの詳細
このモデルはpengold/t5-vietnamese-summarizationをベースにファインチューニングされたものです。
意図された用途と制限
原READMEに意図された用途と制限に関する詳細な内容がありませんでしたので、この部分の説明は省略します。
学習と評価データ
原READMEに学習と評価データに関する詳細な内容がありませんでしたので、この部分の説明は省略します。
🔧 技術詳細
学習ハイパーパラメータ
学習中に使用されたハイパーパラメータは以下の通りです。
- 学習率: 2e-05
- 学習バッチサイズ: 16
- 評価バッチサイズ: 16
- シード: 42
- オプティマイザ: Adam (betas=(0.9,0.999), epsilon=1e-08)
- 学習率スケジューラの種類: linear
- エポック数: 70
学習結果
学習損失 | エポック | ステップ | 検証損失 | Rouge1 | Rouge2 | Rougel | Rougelsum | 生成長 |
---|---|---|---|---|---|---|---|---|
5.2487 | 1.0 | 2007 | 5.0028 | 0.4671 | 0.1595 | 0.2994 | 0.2994 | 18.7618 |
5.217 | 2.0 | 4014 | 4.9802 | 0.4639 | 0.1569 | 0.2984 | 0.2983 | 18.7747 |
5.2191 | 3.0 | 6021 | 4.9685 | 0.4644 | 0.1594 | 0.2989 | 0.2989 | 18.7613 |
5.2254 | 4.0 | 8028 | 4.9477 | 0.4648 | 0.1586 | 0.2988 | 0.2987 | 18.7458 |
5.1735 | 5.0 | 10035 | 4.9366 | 0.4654 | 0.1593 | 0.2988 | 0.2987 | 18.761 |
5.1735 | 6.0 | 12042 | 4.9214 | 0.4676 | 0.1611 | 0.3004 | 0.3004 | 18.78 |
5.1653 | 7.0 | 14049 | 4.9095 | 0.4681 | 0.1616 | 0.3007 | 0.3007 | 18.7523 |
5.1154 | 8.0 | 16056 | 4.8971 | 0.4664 | 0.1598 | 0.3002 | 0.3001 | 18.7655 |
5.1232 | 9.0 | 18063 | 4.8882 | 0.4683 | 0.1612 | 0.3008 | 0.3008 | 18.761 |
5.0995 | 10.0 | 20070 | 4.8758 | 0.4709 | 0.1618 | 0.3021 | 0.302 | 18.7518 |
5.1012 | 11.0 | 22077 | 4.8689 | 0.4685 | 0.1616 | 0.3011 | 0.3009 | 18.7665 |
5.0916 | 12.0 | 24084 | 4.8486 | 0.4695 | 0.1623 | 0.3024 | 0.3023 | 18.7655 |
5.0559 | 13.0 | 26091 | 4.8409 | 0.4699 | 0.1631 | 0.3024 | 0.3023 | 18.7849 |
5.0633 | 14.0 | 28098 | 4.8326 | 0.4705 | 0.1613 | 0.302 | 0.302 | 18.7583 |
5.0335 | 15.0 | 30105 | 4.8243 | 0.4696 | 0.1612 | 0.3023 | 0.3022 | 18.7638 |
5.0271 | 16.0 | 32112 | 4.8046 | 0.4691 | 0.1618 | 0.3022 | 0.3022 | 18.7518 |
5.0045 | 17.0 | 34119 | 4.8060 | 0.4708 | 0.1629 | 0.3029 | 0.3028 | 18.7568 |
5.0072 | 18.0 | 36126 | 4.7945 | 0.4702 | 0.1633 | 0.3024 | 0.3023 | 18.776 |
4.9954 | 19.0 | 38133 | 4.7894 | 0.47 | 0.1639 | 0.3022 | 0.3021 | 18.7785 |
4.9994 | 20.0 | 40140 | 4.7773 | 0.4692 | 0.1625 | 0.3028 | 0.3027 | 18.7623 |
4.953 | 21.0 | 42147 | 4.7641 | 0.4682 | 0.162 | 0.3015 | 0.3014 | 18.757 |
4.9526 | 22.0 | 44154 | 4.7600 | 0.4703 | 0.1626 | 0.3023 | 0.3023 | 18.7625 |
4.9571 | 23.0 | 46161 | 4.7592 | 0.4698 | 0.1627 | 0.3025 | 0.3025 | 18.781 |
4.9324 | 24.0 | 48168 | 4.7511 | 0.4697 | 0.1631 | 0.3022 | 0.3021 | 18.769 |
4.9323 | 25.0 | 50175 | 4.7433 | 0.4723 | 0.1649 | 0.304 | 0.3039 | 18.7757 |
4.9381 | 26.0 | 52182 | 4.7378 | 0.4703 | 0.1629 | 0.3026 | 0.3026 | 18.7782 |
4.9288 | 27.0 | 54189 | 4.7454 | 0.4709 | 0.1627 | 0.3026 | 0.3026 | 18.7777 |
4.9131 | 28.0 | 56196 | 4.7222 | 0.471 | 0.1652 | 0.3037 | 0.3037 | 18.782 |
4.9005 | 29.0 | 58203 | 4.7241 | 0.4719 | 0.1638 | 0.3039 | 0.3038 | 18.778 |
4.9051 | 30.0 | 60210 | 4.7225 | 0.4715 | 0.1647 | 0.3037 | 0.3036 | 18.7668 |
4.8816 | 31.0 | 62217 | 4.7181 | 0.4701 | 0.1631 | 0.3029 | 0.3029 | 18.7416 |
4.8687 | 32.0 | 64224 | 4.7061 | 0.4705 | 0.1643 | 0.3032 | 0.3031 | 18.7625 |
4.8935 | 33.0 | 66231 | 4.7063 | 0.4697 | 0.1632 | 0.3028 | 0.3028 | 18.7458 |
4.88 | 34.0 | 68238 | 4.6984 | 0.471 | 0.164 | 0.3039 | 0.3039 | 18.7663 |
4.8473 | 35.0 | 70245 | 4.6934 | 0.4699 | 0.1636 | 0.3034 | 0.3033 | 18.7531 |
4.8613 | 36.0 | 72252 | 4.6863 | 0.4705 | 0.1631 | 0.303 | 0.303 | 18.7797 |
4.8491 | 37.0 | 74259 | 4.6847 | 0.4703 | 0.1638 | 0.3037 | 0.3037 | 18.78 |
4.8239 | 38.0 | 76266 | 4.6804 | 0.4707 | 0.1632 | 0.3032 | 0.3032 | 18.7802 |
4.8767 | 39.0 | 78273 | 4.6788 | 0.4703 | 0.1637 | 0.3027 | 0.3026 | 18.7446 |
4.8402 | 40.0 | 80280 | 4.6700 | 0.4699 | 0.1633 | 0.3028 | 0.3028 | 18.7516 |
4.8261 | 41.0 | 82287 | 4.6660 | 0.4699 | 0.1633 | 0.3029 | 0.3028 | 18.7369 |
4.8193 | 42.0 | 84294 | 4.6693 | 0.4711 | 0.1654 | 0.3039 | 0.3038 | 18.7421 |
4.8161 | 43.0 | 86301 | 4.6636 | 0.4707 | 0.1642 | 0.303 | 0.303 | 18.7595 |
4.832 | 44.0 | 88308 | 4.6619 | 0.4708 | 0.1646 | 0.3036 | 0.3035 | 18.7423 |
4.8304 | 45.0 | 90315 | 4.6575 | 0.4711 | 0.1651 | 0.3038 | 0.3037 | 18.7354 |
4.7958 | 46.0 | 92322 | 4.6543 | 0.4711 | 0.165 | 0.3032 | 0.3032 | 18.7189 |
4.804 | 47.0 | 94329 | 4.6541 | 0.4711 | 0.1656 | 0.3037 | 0.3036 | 18.7396 |
4.7968 | 48.0 | 96336 | 4.6495 | 0.4709 | 0.165 | 0.3034 | 0.3034 | 18.7411 |
4.7912 | 49.0 | 98343 | 4.6471 | 0.4718 | 0.1655 | 0.3041 | 0.3042 | 18.7361 |
4.7721 | 50.0 | 100350 | 4.6469 | 0.4723 | 0.1667 | 0.3047 | 0.3047 | 18.7309 |
4.7828 | 51.0 | 102357 | 4.6476 | 0.4712 | 0.1656 | 0.3044 | 0.3045 | 18.7446 |
4.7934 | 52.0 | 104364 | 4.6453 | 0.4707 | 0.1645 | 0.3035 | 0.3035 | 18.7329 |
4.7724 | 53.0 | 106371 | 4.6425 | 0.4715 | 0.1657 | 0.304 | 0.304 | 18.7403 |
4.7804 | 54.0 | 108378 | 4.6362 | 0.4711 | 0.1658 | 0.3041 | 0.3041 | 18.7488 |
4.792 | 55.0 | 110385 | 4.6363 | 0.4706 | 0.1653 | 0.3038 | 0.3038 | 18.7281 |
4.7528 | 56.0 | 112392 | 4.6357 | 0.4724 | 0.1667 | 0.3044 | 0.3044 | 18.7463 |
4.7849 | 57.0 | 114399 | 4.6346 | 0.472 | 0.1661 | 0.3041 | 0.304 | 18.7431 |
4.7618 | 58.0 | 116406 | 4.6332 | 0.472 | 0.167 | 0.3046 | 0.3046 | 18.7336 |
4.7841 | 59.0 | 118413 | 4.6287 | 0.4716 | 0.1664 | 0.3043 | 0.3043 | 18.7369 |
4.7764 | 60.0 | 120420 | 4.6316 | 0.473 | 0.1666 | 0.3048 | 0.3047 | 18.7548 |
4.7504 | 61.0 | 122427 | 4.6276 | 0.4721 | 0.1671 | 0.3043 | 0.3044 | 18.7371 |
4.7629 | 62.0 | 124434 | 4.6250 | 0.4726 | 0.167 | 0.3046 | 0.3046 | 18.76 |
4.7764 | 63.0 | 126441 | 4.6264 | 0.4725 | 0.1666 | 0.3044 | 0.3044 | 18.7446 |
4.7524 | 64.0 | 128448 | 4.6275 | 0.4719 | 0.166 | 0.3041 | 0.3041 | 18.7428 |
4.7641 | 65.0 | 130455 | 4.6288 | 0.4728 | 0.1669 | 0.3049 | 0.3049 | 18.7458 |
フレームワークのバージョン
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
📄 ライセンス
このモデルはCC-BY-4.0ライセンスの下で提供されています。
Bart Large Cnn
MIT
英語コーパスで事前学習されたBARTモデルで、CNNデイリーメールデータセットに特化してファインチューニングされ、テキスト要約タスクに適しています。
テキスト生成 英語
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
ParrotはT5ベースの言い換えフレームワークで、自然言語理解(NLU)モデルのトレーニング加速のために設計され、高品質な言い換えによるデータ拡張を実現します。
テキスト生成
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBARTはBARTモデルの蒸留バージョンで、テキスト要約タスクに特化して最適化されており、高い性能を維持しながら推論速度を大幅に向上させています。
テキスト生成 英語
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
T5アーキテクチャに基づくモデルで、要約テキストから原子声明を抽出するために特別に設計されており、要約の事実性評価プロセスの重要なコンポーネントです。
テキスト生成
Transformers 英語

T
Babelscape
666.36k
9
Unieval Sum
UniEvalは自然言語生成タスクの自動評価のための統一された多次元評価器で、複数の解釈可能な次元での評価をサポートします。
テキスト生成
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
PEGASUSアーキテクチャを微調整したテキスト再述モデルで、意味は同じだが表現が異なる文章を生成できます。
テキスト生成
Transformers 英語

P
tuner007
209.03k
185
T5 Base Korean Summarization
これはT5アーキテクチャに基づく韓国語テキスト要約モデルで、韓国語テキスト要約タスク用に設計され、paust/pko-t5-baseモデルを微調整して複数の韓国語データセットで訓練されました。
テキスト生成
Transformers 韓国語

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUSは、Transformerに基づく事前学習モデルで、抽象的なテキスト要約タスクに特化しています。
テキスト生成 英語
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
BART-largeアーキテクチャに基づく対話要約モデルで、SAMSumコーパス用に微調整され、対話要約の生成に適しています。
テキスト生成
Transformers 英語

B
philschmid
141.28k
258
Kobart Summarization
MIT
KoBARTアーキテクチャに基づく韓国語テキスト要約モデルで、韓国語ニュース記事の簡潔な要約を生成できます。
テキスト生成
Transformers 韓国語

K
gogamza
119.18k
12
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98