🚀 RiskData巴西葡萄牙語命名實體識別(NER)
本項目是一個用於巴西葡萄牙語的命名實體識別模型,基於預訓練模型微調而來,能夠準確識別新聞文本中的命名實體,在欺詐和腐敗相關新聞的實體識別任務中表現出色。
🚀 快速開始
模型描述
這是基於 Neuralmind BERTimbau 針對葡萄牙語進行微調的版本。
使用方法
from transformers import BertForTokenClassification, DistilBertTokenizerFast, pipeline
model = BertForTokenClassification.from_pretrained('monilouise/ner_pt_br')
tokenizer = DistilBertTokenizerFast.from_pretrained('neuralmind/bert-base-portuguese-cased'
, model_max_length=512
, do_lower_case=False
)
nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
result = nlp("O Tribunal de Contas da União é localizado em Brasília e foi fundado por Rui Barbosa.")
侷限性和偏差
- 微調後的模型是在從谷歌新聞抓取的約180篇新聞文章的語料庫上訓練的。原項目的目的是識別與欺詐和腐敗相關的新聞中的命名實體,並將這些實體分為四類:人物(PERSON)、組織(ORGANIZATION)、公共機構(PUBLIC INSITUITION)和地點(LOCAL) 。
📊 評估結果
- 準確率(accuracy):0.98
- 精確率(precision):0.86
- 召回率(recall):0.91
- F1值(f1):0.88
分數是使用以下代碼計算的:
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
preds = np.argmax(predictions, axis=2)
batch_size, seq_len = preds.shape
out_label_list = [[] for _ in range(batch_size)]
preds_list = [[] for _ in range(batch_size)]
for i in range(batch_size):
for j in range(seq_len):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(id2tag[label_ids[i][j]])
preds_list[i].append(id2tag[preds[i][j]])
return preds_list, out_label_list
def compute_metrics(p: EvalPrediction) -> Dict:
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
return {
"accuracy_score": accuracy_score(out_label_list, preds_list),
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
BibTeX引用和引用信息
有關BERTimbau語言模型的更多信息:
@inproceedings{souza2020bertimbau,
author = {Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@article{souza2019portuguese,
title={Portuguese Named Entity Recognition using BERT-CRF},
author={Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto},
journal={arXiv preprint arXiv:1909.10649},
url={http://arxiv.org/abs/1909.10649},
year={2019}
}
屬性 |
詳情 |
標籤 |
命名實體識別(NER) |
評估指標 |
準確率、精確率、召回率、F1值 |