🚀 語音識別模型
本項目基於 UsefulSensors/moonshine-base
模型,使用 transformers.js
庫實現自動語音識別功能,為語音處理提供了便捷的解決方案。
🚀 快速開始
本項目提供了兩種使用方式,分別基於 Transformers.js
和 ONNXRuntime
,下面將詳細介紹這兩種方式的安裝和使用方法。
📦 安裝指南
安裝 Transformers.js
如果你還沒有安裝 Transformers.js JavaScript 庫,可以使用以下命令從 NPM 進行安裝:
npm i @huggingface/transformers
💻 使用示例
基礎用法
使用 Transformers.js 進行自動語音識別
import { pipeline } from "@huggingface/transformers";
const transcriber = await pipeline("automatic-speech-recognition", "onnx-community/moonshine-base-ONNX");
const output = await transcriber("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav");
console.log(output);
高級用法
使用 ONNXRuntime 進行自動語音識別
import numpy as np
import onnxruntime as ort
from transformers import AutoConfig, AutoTokenizer
import librosa
model_id = 'onnx-community/moonshine-base-ONNX'
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
encoder_session = ort.InferenceSession('./onnx/encoder_model_quantized.onnx')
decoder_session = ort.InferenceSession('./onnx/decoder_model_merged_quantized.onnx')
eos_token_id = config.eos_token_id
num_key_value_heads = config.decoder_num_key_value_heads
dim_kv = config.hidden_size // config.decoder_num_attention_heads
audio_file = 'jfk.wav'
audio = librosa.load(audio_file, sr=16_000)[0][None]
encoder_outputs = encoder_session.run(None, dict(input_values=audio))[0]
batch_size = encoder_outputs.shape[0]
input_ids = np.array([[config.decoder_start_token_id]] * batch_size)
past_key_values = {
f'past_key_values.{layer}.{module}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, dim_kv], dtype=np.float32)
for layer in range(config.decoder_num_hidden_layers)
for module in ('decoder', 'encoder')
for kv in ('key', 'value')
}
max_len = min((audio.shape[-1] // 16_000) * 6, config.max_position_embeddings)
generated_tokens = input_ids
for i in range(max_len):
use_cache_branch = i > 0
logits, *present_key_values = decoder_session.run(None, dict(
input_ids=generated_tokens[:, -1:],
encoder_hidden_states=encoder_outputs,
use_cache_branch=[use_cache_branch],
**past_key_values,
))
next_tokens = logits[:, -1].argmax(-1, keepdims=True)
for j, key in enumerate(past_key_values):
if not use_cache_branch or 'decoder' in key:
past_key_values[key] = present_key_values[j]
generated_tokens = np.concatenate([generated_tokens, next_tokens], axis=-1)
if (next_tokens == eos_token_id).all():
break
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(result)
📄 許可證
本項目採用 MIT 許可證。