🚀 捷克語XLSR Wav2Vec2大模型53
本項目基於Common Voice數據集,對facebook/wav2vec2-large-xlsr-53模型進行了針對捷克語的微調。使用此模型時,請確保語音輸入的採樣率為16kHz。
✨ 主要特性
- 語言:捷克語(cs)
- 數據集:Common Voice
- 評估指標:詞錯誤率(WER)
- 標籤:音頻、自動語音識別、語音、XLSR微調周
- 許可證:Apache-2.0
模型信息
屬性 |
詳情 |
模型名稱 |
捷克語XLSR Wav2Vec2大模型53 |
任務類型 |
語音識別(自動語音識別) |
數據集 |
Common Voice cs |
測試WER |
24.56 |
🚀 快速開始
模型使用
本模型可直接使用(無需語言模型),示例代碼如下:
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
模型評估
可在Common Voice的捷克語測試數據上對模型進行評估,示例代碼如下:
高級用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "cs", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech")
model.to("cuda")
chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“']
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip()
batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence'])
batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence'])
batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence'])
batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence'])
batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence'])
batch['sentence'] = re.sub(' ', ' ', batch['sentence'])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:24.56
🔧 訓練信息
本模型使用了Common Voice數據集的train
和validation
子集進行訓練。訓練腳本即將在此處發佈。
📄 許可證
本項目採用Apache-2.0許可證。