🚀 重新思考生成式命名實體識別中的負樣本
本項目提出了生成式命名實體識別(GNER)框架,該框架在未見實體領域展現出了強大的零樣本能力。通過在兩個代表性生成模型(LLaMA和Flan - T5)上的實驗表明,在訓練過程中引入負樣本能夠顯著提升模型性能。由此得到的GNER - LLaMA和GNER - T5模型大幅超越了現有最優方法,$F_1$分數分別提高了8分和11分。代碼和模型均已公開。
🚀 快速開始
安裝依賴
你需要安裝以下依賴:
pip install torch datasets deepspeed accelerate transformers protobuf
使用指南
請參考示例Jupyter筆記本以瞭解如何使用GNER模型。
✨ 主要特性
- 強大的零樣本能力:GNER框架在未見實體領域展現出了出色的零樣本性能。
- 性能顯著提升:在訓練過程中引入負樣本,使得模型性能大幅超越現有最優方法。
- 多模型發佈:基於LLaMA (7B) 和Flan - T5 (base, large, xl和xxl) 發佈了五個GNER模型。
📦 安裝指南
安裝所需依賴:
pip install torch datasets deepspeed accelerate transformers protobuf
💻 使用示例
基礎用法
以下是使用GNER - T5
的簡單推理示例:
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("dyyyyyyyy/GNER-T5-xxl")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("dyyyyyyyy/GNER-T5-xxl", torch_dtype=torch.bfloat16).cuda()
>>> model = model.eval()
>>> instruction_template = "Please analyze the sentence provided, identifying the type of entity for each word on a token-by-token basis.\nOutput format is: word_1(label_1), word_2(label_2), ...\nWe'll use the BIO-format to label the entities, where:\n1. B- (Begin) indicates the start of a named entity.\n2. I- (Inside) is used for words within a named entity but are not the first word.\n3. O (Outside) denotes words that are not part of a named entity.\n"
>>> sentence = "did george clooney make a musical in the 1980s"
>>> entity_labels = ["genre", "rating", "review", "plot", "song", "average ratings", "director", "character", "trailer", "year", "actor", "title"]
>>> instruction = f"{instruction_template}\nUse the specific entity tags: {', '.join(entity_labels)} and O.\nSentence: {sentence}"
>>> inputs = tokenizer(instruction, return_tensors="pt").to("cuda")
>>> outputs = model.generate(**inputs, max_new_tokens=640)
>>> response = tokenizer.decode(outputs[0], skip_special_tokens=True)
>>> print(response)
"did(O) george(B-actor) clooney(I-actor) make(O) a(O) musical(B-genre) in(O) the(O) 1980s(B-year)"
📚 詳細文檔
預訓練模型
我們基於LLaMA (7B) 和Flan - T5 (base, large, xl和xxl) 發佈了五個GNER模型。
屬性 |
詳情 |
模型類型 |
GNER - LLaMA、GNER - T5 - base、GNER - T5 - large、GNER - T5 - xl、GNER - T5 - xxl |
訓練數據 |
Universal - NER/Pile - NER - type |
模型 |
參數數量 |
零樣本平均$F_1$分數 |
有監督平均$F_1$分數 |
🤗 HuggingFace下載鏈接 |
GNER - LLaMA |
7B |
66.1 |
86.09 |
鏈接 |
GNER - T5 - base |
248M |
59.5 |
83.21 |
鏈接 |
GNER - T5 - large |
783M |
63.5 |
85.45 |
鏈接 |
GNER - T5 - xl |
3B |
66.1 |
85.94 |
鏈接 |
GNER - T5 - xxl |
11B |
69.1 |
86.15 |
鏈接 |
相關鏈接
引用
@misc{ding2024rethinking,
title={Rethinking Negative Instances for Generative Named Entity Recognition},
author={Yuyang Ding and Juntao Li and Pinzheng Wang and Zecheng Tang and Bowen Yan and Min Zhang},
year={2024},
eprint={2402.16602},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📄 許可證
本項目採用Apache - 2.0許可證。