🚀 重新思考生成式命名實體識別中的負樣本
本項目提出了一種生成式命名實體識別(GNER)框架,該框架在未見實體領域展現出出色的零樣本學習能力。通過在兩個代表性生成模型(LLaMA和Flan - T5)的訓練過程中引入負樣本,顯著提升了模型性能。所得到的GNER - LLaMA和GNER - T5模型大幅超越了當前的先進方法,$F_1$分數分別提高了8分和11分。項目代碼和模型均已公開。
📦 安裝指南
你需要安裝以下依賴:
pip install torch datasets deepspeed accelerate transformers protobuf
💻 使用示例
基礎用法
請參考 Jupyter Notebook示例 來使用GNER模型。
以下是一個使用 GNER - T5
的簡單推理示例:
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("dyyyyyyyy/GNER-T5-xxl")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("dyyyyyyyy/GNER-T5-xxl", torch_dtype=torch.bfloat16).cuda()
>>> model = model.eval()
>>> instruction_template = "Please analyze the sentence provided, identifying the type of entity for each word on a token-by-token basis.\nOutput format is: word_1(label_1), word_2(label_2), ...\nWe'll use the BIO-format to label the entities, where:\n1. B- (Begin) indicates the start of a named entity.\n2. I- (Inside) is used for words within a named entity but are not the first word.\n3. O (Outside) denotes words that are not part of a named entity.\n"
>>> sentence = "did george clooney make a musical in the 1980s"
>>> entity_labels = ["genre", "rating", "review", "plot", "song", "average ratings", "director", "character", "trailer", "year", "actor", "title"]
>>> instruction = f"{instruction_template}\nUse the specific entity tags: {', '.join(entity_labels)} and O.\nSentence: {sentence}"
>>> inputs = tokenizer(instruction, return_tensors="pt").to("cuda")
>>> outputs = model.generate(**inputs, max_new_tokens=640)
>>> response = tokenizer.decode(outputs[0], skip_special_tokens=True)
>>> print(response)
"did(O) george(B-actor) clooney(I-actor) make(O) a(O) musical(B-genre) in(O) the(O) 1980s(B-year)"
📚 詳細文檔
預訓練模型
我們發佈了五個基於LLaMA(7B)和Flan - T5(base、large、xl和xxl)的GNER模型。
模型 |
參數數量 |
零樣本平均 $F_1$ 分數 |
有監督平均 $F_1$ 分數 |
🤗 HuggingFace 下載鏈接 |
GNER - LLaMA |
7B |
66.1 |
86.09 |
鏈接 |
GNER - T5 - base |
248M |
59.5 |
83.21 |
鏈接 |
GNER - T5 - large |
783M |
63.5 |
85.45 |
鏈接 |
GNER - T5 - xl |
3B |
66.1 |
85.94 |
鏈接 |
GNER - T5 - xxl |
11B |
69.1 |
86.15 |
鏈接 |
📄 許可證
本項目採用Apache - 2.0許可證。
📖 引用
如果你使用了本項目的代碼或模型,請引用以下論文:
@misc{ding2024rethinking,
title={Rethinking Negative Instances for Generative Named Entity Recognition},
author={Yuyang Ding and Juntao Li and Pinzheng Wang and Zecheng Tang and Bowen Yan and Min Zhang},
year={2024},
eprint={2402.16602},
archivePrefix={arXiv},
primaryClass={cs.CL}
}