🚀 Wav2Vec2-Large-XLSR-53-葡萄牙語
本模型基於 Common Voice 數據集,在葡萄牙語上對 facebook/wav2vec2-large-xlsr-53 進行了微調。使用此模型時,請確保語音輸入的採樣率為 16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),具體步驟如下。
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\;\"\“\'\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:17.22 %
🔧 技術細節
訓練
訓練使用了 Common Voice 的 train
和 validation
數據集。訓練腳本可在 此處 找到。傳遞的參數如下:
#!/usr/bin/env bash
python run_common_voice.py \
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \
--dataset_config_name="pt" \
--output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \
--cache_dir=/workspace/data \
--overwrite_output_dir \
--num_train_epochs="30" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--evaluation_strategy="steps" \
--learning_rate="3e-4" \
--warmup_steps="500" \
--fp16 \
--freeze_feature_extractor \
--save_steps="500" \
--eval_steps="500" \
--save_total_limit="1" \
--logging_steps="500" \
--group_by_length \
--feat_proj_dropout="0.0" \
--layerdrop="0.1" \
--gradient_checkpointing \
--do_train --do_eval \
包含評估的 Notebook 可在 此處 找到。
📄 許可證
本模型使用的許可證為 apache-2.0。
📦 模型信息
屬性 |
詳情 |
模型類型 |
語音識別模型 |
訓練數據 |
Common Voice 葡萄牙語數據集 |
評估指標 |
詞錯誤率(WER) |
測試 WER |
17.22 |