Wav2vec2 Large Xlsr Persian Shemo
基於Wav2Vec2-Large-XLSR-53在波斯語ShEMO數據集上微調的自動語音識別模型
下載量 28
發布時間 : 3/2/2022
模型概述
該模型是針對波斯語(Farsi)優化的自動語音識別(ASR)模型,基於Facebook的Wav2Vec2-Large-XLSR-53架構,在ShEMO波斯語情感語音數據集上微調而成,適用於波斯語語音轉文本任務。
模型特點
波斯語優化
專門針對波斯語語音特點進行優化,包含波斯語特有的文本規範化處理
情感語音識別
在ShEMO情感語音數據集上微調,對帶有情感的波斯語語音有更好識別效果
無需語言模型
可直接使用,無需額外語言模型支持
模型能力
波斯語語音識別
情感語音處理
16kHz音頻處理
使用案例
語音轉文本
波斯語語音轉錄
將波斯語語音內容轉換為文本
在ShEMO測試集上達到31%的WER
情感語音分析
識別帶有情感的波斯語語音內容
🚀 Wav2Vec2-Large-XLSR-53-波斯語 ShEMO
該模型基於 Wav2Vec2-Large-XLSR-53-波斯語 V2,使用 ShEMO 數據集進行了波斯語(法爾西語)的微調。使用此模型時,請確保輸入的語音採樣率為 16kHz。
🚀 快速開始
模型信息
屬性 | 詳情 |
---|---|
模型類型 | XLSR Wav2Vec2 波斯語(法爾西語)ShEMO 由 Mehrdad Farahani 開發 |
訓練數據 | 使用了 Common Voice 的 train 和 validation 數據集進行訓練 |
許可證 | Apache-2.0 |
示例音頻
評估指標
在波斯語(法爾西語)測試數據上的詞錯誤率(WER)為 30.00%。
✨ 主要特性
- 基於 Wav2Vec2-Large-XLSR-53 模型進行波斯語微調,適用於波斯語語音識別任務。
- 可直接使用,無需語言模型。
📦 安裝指南
# 安裝所需的包
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install hazm
!pip install num2fawords
💻 使用示例
基礎用法
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
from num2fawords import words, ordinal_words
import numpy as np
import hazm
import re
import string
_normalizer = hazm.Normalizer()
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
'ā', 'š',
# "ء",
]
# 針對波斯語的處理
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
chars_to_mapping = {
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
# "ها": " ها", "ئ": "ی",
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
"y": " وای ", "z": " زد ",
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = _normalizer.normalize(text)
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
text = re.sub(" +", " ", text)
_text = []
for word in text.split():
try:
word = int(word)
_text.append(words(word))
except:
_text.append(word)
text = " ".join(_text) + " "
text = text.strip() + " "
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo").to(device)
dataset = load_dataset("csv", data_files={"test": "/content/fa/dataset/test.csv"}, delimiter="\t")["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
輸出示例
reference: همون شبی که قسم خوردی منو از جونت بیشتر دوست داری و تا آخر عمر کنار من می مونی همون شبی که به من وعده دادی بزرگترین جشن های ازدواج رو برام بگیری
predicted: همون شبی که قسم خوردی منو از جونت بیشتر دوستاری و تا آخر عمر کنار من می مونیمو یبی که به من وعض دادین بزرگترین جشن های ازدواج و برام بگیری
---
reference: خودتون دم به ساعت فحشش می دین کتکش می زنین بس نیست
predicted: خودتون دم به ساعت فشش می دیم کتاکش می زنیم بس نیست
---
reference: خونه
predicted: خونه
---
reference: شلوغش نکن
predicted: شلوغش نکن
---
reference: برای بقیه سوییت هایی در نظر گرفتم
predicted: برای بقی سویید هایی در نظر گرفتم
---
reference: برو گمشو برو گمشو برو بیرون
predicted: برو گمشو برو گمشو برو بیرون
---
reference: فقط یک سال بعد از خاتمه جنگ بود که حقیقت رو فهمیدی
predicted: فقط یک سال بعد از خاتمه جنگ بود که حقیقت و فهمیدید
---
reference: غیر از اون دو نفری که اینجا خوابیدند کسان دیگه ای از دوستانشو به تو معرفی نکرده
predicted: غیر از اون دو نفری که اینجا خوابیدند کسانه دیگه ای از دوستانشو به تو معرفی نکرده
---
reference: من می دونم اینجایی درو واز کن کویی کوئک
predicted: من می دونم این جایی د رو واز کن کوری فکر
---
reference: نویسنده باید چهار تا چشم داشته باشه چهار تا گوش
predicted: نویسند باید چهار تا چشم داشته باشه و چهار تا گوش
---
reference: غیر از اون دو نفری که اینجا خوابیدند کسان دیگه ای از دوستانشو به تو معرفی نکرده
predicted: غیر از اون دو نفری که اینجا خوابیدند کسانه دیگه ای از دوستانشو به تو معرفی نکرده
---
reference: پس همراهان من چه می کنن چه می کنن که این سرکرده کولی ها تونسته خودشو اینجا برسونه
predicted: پس همرا حال من چه می کنن چه می کنن که این سرکرده کلی ها تونسته خودش رو اینجا برسونه
---
reference: گوش بدید مادمازل حقیقت اینه که من دلم می خواد به شما کمک کنم زیبایی و جوانی شما دل منو به رحم میاره به من اعتماد کنید دلم می خواد بتونم شما رو از مرگ نجات بدم
predicted: هوش بدید مادماز حقیقت اینه که من دلم می خواد به شما کمک کنم زیبای و جوانی شما دل منو به رحم می آره به من اعتماد کنید دلم می خواد بتونم شما رو از مرگ نجات بدم
---
reference: قربان به نظر می رسه شما نه تنها به مرگ رونالد دریو بلکه به مرگ خانم مونرو هم مشکوکید
predicted: قربان به نظر می رسه شما نه تن ها به مرگ رونال گریو بلکه به مرگ خانم مونرا مشکوکین
---
reference: برای اینکه شما رو دوست دارم
predicted: برای اینکه شما رو دوست دارم
---
reference: مرتبه اول دنبال جسدی می گشتن که انداخته بودن کنار خیابون
predicted: حر تبه اول دنبال جسدی می گشتند که انداخته بودن کنار خیابون
---
reference: خونه
predicted: خونه
---
reference: کدبانوی جدید این طبقه هستم
predicted: کدبانوی جدید این طبقه هستم
---
reference: و این برات خیلی گرون تموم شد
predicted: و این برات خیلی گرون تموم شد
---
reference: خب چرا نمی دین به خودشون
predicted: خبچرا نمی تون به خودشون
📚 詳細文檔
評估模型
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
from num2fawords import words, ordinal_words
import numpy as np
import hazm
import re
import string
_normalizer = hazm.Normalizer()
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
'ā', 'š',
# "ء",
]
# 針對波斯語的處理
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
chars_to_mapping = {
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
# "ها": " ها", "ئ": "ی",
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
"y": " وای ", "z": " زد ",
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = _normalizer.normalize(text)
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
text = re.sub(" +", " ", text)
_text = []
for word in text.split():
try:
word = int(word)
_text.append(words(word))
except:
_text.append(word)
text = " ".join(_text) + " "
text = text.strip() + " "
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo").to(device)
dataset = load_dataset("csv", data_files={"test": "/content/fa/dataset/test.csv"}, delimiter="\t")["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
測試結果
- WER: 31.00%
訓練信息
使用 Common Voice 的 train
和 validation
數據集進行訓練。訓練腳本可在 此處 找到。
📄 許可證
本項目採用 Apache-2.0 許可證。
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98