Wav2vec2 Large Xlsr Persian Shemo
An automatic speech recognition model fine-tuned on the Persian ShEMO dataset based on Wav2Vec2-Large-XLSR-53
Downloads 28
Release Time : 3/2/2022
Model Overview
This model is an automatic speech recognition (ASR) model optimized for Persian (Farsi), based on Facebook's Wav2Vec2-Large-XLSR-53 architecture and fine-tuned on the ShEMO Persian emotional speech dataset, suitable for Persian speech-to-text tasks.
Model Features
Persian optimization
Specifically optimized for Persian speech characteristics, including Persian-specific text normalization processing
Emotional speech recognition
Fine-tuned on the ShEMO emotional speech dataset, providing better recognition for Persian speech with emotional content
No language model required
Can be used directly without additional language model support
Model Capabilities
Persian speech recognition
Emotional speech processing
16kHz audio processing
Use Cases
Speech-to-text
Persian speech transcription
Convert Persian speech content into text
Achieved 31% WER on the ShEMO test set
Emotional speech analysis
Identify Persian speech content with emotional tones
🚀 Wav2Vec2-Large-XLSR-53-Persian ShEMO
This model is a fine - tuned version of Wav2Vec2-Large-XLSR-53-Persian V2 in Persian (Farsi) using ShEMO. Ensure your speech input is sampled at 16kHz when using this model.
🚀 Quick Start
This model can be used directly (without a language model). Here are the steps:
✨ Features
- Fine - Tuned: Based on Wav2Vec2-Large-XLSR-53-Persian V2, fine - tuned on the ShEMO dataset.
- Speech Recognition: Suitable for automatic speech recognition tasks in Persian (Farsi).
📦 Installation
Requirements:
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install hazm
!pip install num2fawords
💻 Usage Examples
Basic Usage
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
from num2fawords import words, ordinal_words
import numpy as np
import hazm
import re
import string
_normalizer = hazm.Normalizer()
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
'ā', 'š',
# "ء",
]
# In case of farsi
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
chars_to_mapping = {
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
# "ها": " ها", "ئ": "ی",
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
"y": " وای ", "z": " زد ",
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = _normalizer.normalize(text)
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
text = re.sub(" +", " ", text)
_text = []
for word in text.split():
try:
word = int(word)
_text.append(words(word))
except:
_text.append(word)
text = " ".join(_text) + " "
text = text.strip() + " "
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo").to(device)
dataset = load_dataset("csv", data_files={"test": "/content/fa/dataset/test.csv"}, delimiter="\t")["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
Output:
reference: همون شبی که قسم خوردی منو از جونت بیشتر دوست داری و تا آخر عمر کنار من می مونی همون شبی که به من وعده دادی بزرگترین جشن های ازدواج رو برام بگیری
predicted: همون شبی که قسم خوردی منو از جونت بیشتر دوستاری و تا آخر عمر کنار من می مونیمو یبی که به من وعض دادین بزرگترین جشن های ازدواج و برام بگیری
---
reference: خودتون دم به ساعت فحشش می دین کتکش می زنین بس نیست
predicted: خودتون دم به ساعت فشش می دیم کتاکش می زنیم بس نیست
---
reference: خونه
predicted: خونه
---
reference: شلوغش نکن
predicted: شلوغش نکن
---
reference: برای بقیه سوییت هایی در نظر گرفتم
predicted: برای بقی سویید هایی در نظر گرفتم
---
reference: برو گمشو برو گمشو برو بیرون
predicted: برو گمشو برو گمشو برو بیرون
---
reference: فقط یک سال بعد از خاتمه جنگ بود که حقیقت رو فهمیدی
predicted: فقط یک سال بعد از خاتمه جنگ بود که حقیقت و فهمیدید
---
reference: غیر از اون دو نفری که اینجا خوابیدند کسان دیگه ای از دوستانشو به تو معرفی نکرده
predicted: غیر از اون دو نفری که اینجا خوابیدند کسانه دیگه ای از دوستانشو به تو معرفی نکرده
---
reference: من می دونم اینجایی درو واز کن کویی کوئک
predicted: من می دونم این جایی د رو واز کن کوری فکر
---
reference: نویسنده باید چهار تا چشم داشته باشه چهار تا گوش
predicted: نویسند باید چهار تا چشم داشته باشه و چهار تا گوش
---
reference: غیر از اون دو نفری که اینجا خوابیدند کسان دیگه ای از دوستانشو به تو معرفی نکرده
predicted: غیر از اون دو نفری که اینجا خوابیدند کسانه دیگه ای از دوستانشو به تو معرفی نکرده
---
reference: پس همراهان من چه می کنن چه می کنن که این سرکرده کولی ها تونسته خودشو اینجا برسونه
predicted: پس همرا حال من چه می کنن چه می کنن که این سرکرده کلی ها تونسته خودش رو اینجا برسونه
---
reference: گوش بدید مادمازل حقیقت اینه که من دلم می خواد به شما کمک کنم زیبایی و جوانی شما دل منو به رحم میاره به من اعتماد کنید دلم می خواد بتونم شما رو از مرگ نجات بدم
predicted: هوش بدید مادماز حقیقت اینه که من دلم می خواد به شما کمک کنم زیبای و جوانی شما دل منو به رحم می آره به من اعتماد کنید دلم می خواد بتونم شما رو از مرگ نجات بدم
---
reference: قربان به نظر می رسه شما نه تنها به مرگ رونالد دریو بلکه به مرگ خانم مونرو هم مشکوکید
predicted: قربان به نظر می رسه شما نه تن ها به مرگ رونال گریو بلکه به مرگ خانم مونرا مشکوکین
---
reference: برای اینکه شما رو دوست دارم
predicted: برای اینکه شما رو دوست دارم
---
reference: مرتبه اول دنبال جسدی می گشتن که انداخته بودن کنار خیابون
predicted: حر تبه اول دنبال جسدی می گشتند که انداخته بودن کنار خیابون
---
reference: خونه
predicted: خونه
---
reference: کدبانوی جدید این طبقه هستم
predicted: کدبانوی جدید این طبقه هستم
---
reference: و این برات خیلی گرون تموم شد
predicted: و این برات خیلی گرون تموم شد
---
reference: خب چرا نمی دین به خودشون
predicted: خبچرا نمی تون به خودشون
📚 Documentation
Evaluation
The model can be evaluated on the Persian (Farsi) test data of Common Voice as follows:
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
from num2fawords import words, ordinal_words
import numpy as np
import hazm
import re
import string
_normalizer = hazm.Normalizer()
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
'ā', 'š',
# "ء",
]
# In case of farsi
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
chars_to_mapping = {
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
# "ها": " ها", "ئ": "ی",
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
"y": " وای ", "z": " زد ",
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = _normalizer.normalize(text)
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
text = re.sub(" +", " ", text)
_text = []
for word in text.split():
try:
word = int(word)
_text.append(words(word))
except:
_text.append(word)
text = " ".join(_text) + " "
text = text.strip() + " "
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-shemo").to(device)
dataset = load_dataset("csv", data_files={"test": "/content/fa/dataset/test.csv"}, delimiter="\t")["test"]
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
Test Result:
- WER: 31.00%
🔧 Technical Details
The Common Voice train
, validation
datasets were used for training.
📄 License
This project is licensed under the Apache - 2.0 license.
Model Information
Property | Details |
---|---|
Model Type | Fine - tuned Wav2Vec2-Large-XLSR-53-Persian for ShEMO dataset |
Training Data | Common Voice train , validation datasets |
License | Apache - 2.0 |
Tags | audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
Datasets | shemo |
Widgets
- ShEMO sample 250: Audio Sample
- ShEMO sample 52: Audio Sample
Model Index
- Name: XLSR Wav2Vec2 Persian (Farsi) ShEMO by Mehrdad Farahani
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic - speech - recognition
- Dataset:
- Name: ShEMO fa
- Type: shemo
- Args: fa
- Metrics:
- Name: Test WER
- Type: wer
- Value: 30.00
- Task:
- Results:
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models