🚀 波斯語(法爾西語 - fa)語音情感識別使用Wav2Vec 2.0
本項目利用Wav2Vec 2.0模型實現波斯語語音的情感識別,為語音情感分析領域提供了有效的解決方案。
🚀 快速開始
✨ 主要特性
- 支持波斯語語音情感識別。
- 基於Wav2Vec 2.0模型,具有較高的準確性。
- 提供詳細的使用示例和評估指標。
📦 安裝指南
依賴包安裝
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
💻 使用示例
基礎用法
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
高級用法
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "/path/to/sadness.wav"
outputs = predict(path, sampling_rate)
[
{'Label': 'Anger', 'Score': '0.0%'},
{'Label': 'Fear', 'Score': '0.0%'},
{'Label': 'Happiness', 'Score': '0.0%'},
{'Label': 'Neutral', 'Score': '0.0%'},
{'Label': 'Sadness', 'Score': '99.9%'},
{'Label': 'Surprise', 'Score': '0.0%'}
]
📚 詳細文檔
評估指標
以下表格總結了模型在整體和每個類別上的得分情況。
情感 |
精確率 |
召回率 |
F1分數 |
準確率 |
憤怒 |
0.95 |
0.95 |
0.95 |
|
恐懼 |
0.33 |
0.17 |
0.22 |
|
快樂 |
0.69 |
0.69 |
0.69 |
|
中立 |
0.91 |
0.94 |
0.93 |
|
悲傷 |
0.92 |
0.85 |
0.88 |
|
驚訝 |
0.81 |
0.88 |
0.84 |
|
|
|
|
總體 |
0.90 |
📄 許可證
本項目採用Apache-2.0許可證。
🔍 常見問題
如果您有任何問題,請從這裡提交GitHub問題。