🚀 波斯语(法尔西语 - fa)语音情感识别使用Wav2Vec 2.0
本项目利用Wav2Vec 2.0模型实现波斯语语音的情感识别,为语音情感分析领域提供了有效的解决方案。
🚀 快速开始
✨ 主要特性
- 支持波斯语语音情感识别。
- 基于Wav2Vec 2.0模型,具有较高的准确性。
- 提供详细的使用示例和评估指标。
📦 安装指南
依赖包安装
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
💻 使用示例
基础用法
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
高级用法
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
path = "/path/to/sadness.wav"
outputs = predict(path, sampling_rate)
[
{'Label': 'Anger', 'Score': '0.0%'},
{'Label': 'Fear', 'Score': '0.0%'},
{'Label': 'Happiness', 'Score': '0.0%'},
{'Label': 'Neutral', 'Score': '0.0%'},
{'Label': 'Sadness', 'Score': '99.9%'},
{'Label': 'Surprise', 'Score': '0.0%'}
]
📚 详细文档
评估指标
以下表格总结了模型在整体和每个类别上的得分情况。
情感 |
精确率 |
召回率 |
F1分数 |
准确率 |
愤怒 |
0.95 |
0.95 |
0.95 |
|
恐惧 |
0.33 |
0.17 |
0.22 |
|
快乐 |
0.69 |
0.69 |
0.69 |
|
中立 |
0.91 |
0.94 |
0.93 |
|
悲伤 |
0.92 |
0.85 |
0.88 |
|
惊讶 |
0.81 |
0.88 |
0.84 |
|
|
|
|
总体 |
0.90 |
📄 许可证
本项目采用Apache-2.0许可证。
🔍 常见问题
如果您有任何问题,请从这里提交GitHub问题。