Wav2vec2 Large Xlsr 53 German
基於facebook/wav2vec2-large-xlsr-53在Common Voice德語數據集上微調的自動語音識別模型,測試WER為15.80%。
下載量 25
發布時間 : 3/2/2022
模型概述
這是一個針對德語優化的自動語音識別模型,能夠將德語語音轉換為文本。
模型特點
高精度德語識別
在Common Voice德語測試集上達到15.80%的WER(詞錯誤率)
基於XLSR預訓練模型
基於facebook/wav2vec2-large-xlsr-53模型微調,具有強大的語音特徵提取能力
無需語言模型
可直接使用,無需額外的語言模型支持
模型能力
德語語音識別
語音轉文本
16kHz音頻處理
使用案例
語音轉錄
德語語音轉寫
將德語語音內容轉換為文本格式
詞錯誤率15.80%
語音助手
德語語音指令識別
用於德語語音助手系統中的語音指令理解
🚀 Wav2Vec2-Large-XLSR-53-德語版
該項目基於Common Voice數據集,對德語進行微調後的facebook/wav2vec2-large-xlsr-53模型。使用此模型時,請確保語音輸入採樣率為16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),使用時請確保語音輸入採樣率為16kHz。
✨ 主要特性
- 多數據集支持:使用了
common_voice
和wer
等數據集進行訓練和評估。 - 特定任務適配:適用於音頻、自動語音識別等任務。
- 低錯誤率:在德語語音識別測試中,字錯率(WER)為15.80%。
📦 安裝指南
文檔未提及安裝步驟,故跳過此章節。
💻 使用示例
基礎用法
模型可以直接(不使用語言模型)按如下方式使用:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "de", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
模型也可以按以下方式在Common Voice的德語測試數據上進行評估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "de", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\么\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\鄉\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
'c' : '[\č\ć\ç\с]',
'l' : '[\ł]',
'u' : '[\ú\ū\ứ\ů]',
'und' : '[\&]',
'r' : '[\ř]',
'y' : '[\ý]',
's' : '[\ś\š\ș\ş]',
'i' : '[\ī\ǐ\í\ï\î\ï]',
'z' : '[\ź\ž\ź\ż]',
'n' : '[\ñ\ń\ņ]',
'g' : '[\ğ]',
'ss' : '[\ß]',
't' : '[\ț\ť]',
'd' : '[\ď\đ]',
"'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
for x in substitutions:
batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
模型還可以分10%的塊進行評估,這樣所需資源更少(待測試):
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import jiwer
lang_id = "de"
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\么\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\鄉\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
'c' : '[\č\ć\ç\с]',
'l' : '[\ł]',
'u' : '[\ú\ū\ứ\ů]',
'und' : '[\&]',
'r' : '[\ř]',
'y' : '[\ý]',
's' : '[\ś\š\ș\ş]',
'i' : '[\ī\ǐ\í\ï\î\ï]',
'z' : '[\ź\ž\ź\ż]',
'n' : '[\ñ\ń\ņ]',
'g' : '[\ğ]',
'ss' : '[\ß]',
't' : '[\ț\ť]',
'd' : '[\ď\đ]',
"'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
for x in substitutions:
batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
H, S, D, I = 0, 0, 0, 0
for i in range(10):
print("test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
test_dataset = load_dataset("common_voice", "de", split="test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
test_dataset = test_dataset.map(speech_file_to_array_fn)
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = result["pred_strings"]
targets = result["sentence"]
chunk_metrics = jiwer.compute_measures(targets, predictions)
H = H + chunk_metrics["hits"]
S = S + chunk_metrics["substitutions"]
D = D + chunk_metrics["deletions"]
I = I + chunk_metrics["insertions"]
WER = float(S + D + I) / float(H + S + D)
print("WER: {:2f}".format(WER*100))
測試結果:15.80 %
📚 詳細文檔
訓練信息
使用了Common Voice train
數據集的前50%和validation
數據集的12%進行訓練(前12%訓練30個epoch,其餘部分訓練3個epoch)。
🔧 技術細節
文檔未提及具體技術細節,故跳過此章節。
📄 許可證
本項目採用Apache 2.0許可證。
信息表格
屬性 | 詳情 |
---|---|
模型類型 | XLSR Wav2Vec2 Large 53 |
訓練數據 | Common Voice數據集的訓練集前50%和驗證集的12% |
測試集 | Common Voice de |
測試指標 | 字錯率(WER) |
測試結果 | 15.80% |
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98