🚀 Wav2Vec2-Large-XLSR-53-土耳其語模型
本項目基於 Common Voice 數據集,對 facebook/wav2vec2-large-xlsr-53 模型進行了土耳其語的微調。使用該模型時,請確保輸入的語音採樣率為 16kHz。
🚀 快速開始
本模型是基於Transformer架構的語音識別模型,通過在土耳其語的Common Voice數據集上微調預訓練的Wav2Vec2-Large-XLSR-53模型得到,可用於土耳其語的自動語音識別任務。
✨ 主要特性
- 語言:支持土耳其語。
- 數據集:基於Common Voice數據集進行訓練。
- 評估指標:使用字錯率(WER)進行評估。
屬性 |
詳情 |
模型類型 |
微調後的Wav2Vec2-Large-XLSR-53模型 |
訓練數據 |
Common Voice土耳其語數據集 |
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "tr", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�\\’\\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:29.62 %
📚 詳細文檔
訓練
訓練使用了Common Voice的train
和validation
數據集。訓練腳本可在 此處 找到。
📄 許可證
本項目採用Apache-2.0許可證。