🚀 Wav2Vec2-Large-XLSR-53-EU
本項目是在巴斯克語上使用Common Voice數據集對facebook/wav2vec2-large-xlsr-53進行微調的成果。使用該模型時,請確保輸入的語音採樣率為16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),以下是具體的使用步驟。
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-eu")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")
model_name = "pcuenq/wav2vec2-large-xlsr-53-eu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.to("cuda")
chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]'
chars_to_ignore_pattern = re.compile(chars_to_ignore_regex)
def remove_special_characters(batch):
batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " "
return batch
import librosa
def speech_file_to_array_fn(batch):
speech_array, sample_rate = torchaudio.load(batch["path"])
batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000)
return batch
def cv_prepare(batch):
batch = remove_special_characters(batch)
batch = speech_file_to_array_fn(batch)
return batch
num_proc = 16
test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
評估結果
測試結果:15.34 %
📚 詳細文檔
訓練信息
訓練使用了Common Voice的train
和validation
數據集,共進行了22 + 20個epoch的訓練,訓練參數如下:
- 批量大小:16,梯度累積步數:2。
- 學習率:2.5e-4
- 激活丟棄率:0.05
- 注意力丟棄率:0.1
- 隱藏層丟棄率:0.05
- 特徵投影丟棄率:0.05
- 掩碼時間概率:0.08
- 層丟棄率:0.05
📄 許可證
本項目採用Apache-2.0許可證。
📦 模型信息
屬性 |
詳情 |
模型類型 |
XLSR Wav2Vec2 Large 53巴斯克語版,由pcuenq微調 |
訓練數據 |
Common Voice巴斯克語數據集 |
評估指標 |
詞錯誤率(WER) |
測試WER |
15.34% |