🚀 Wav2Vec2-Large-XLSR-53-印地語
本項目基於 [Multilingual and code - switching ASR challenges for low resource Indian languages](https://navana - tech.github.io/IS21SS - indicASRchallenge/data.html) 對 [facebook/wav2vec2 - large - xlsr - 53](https://huggingface.co/facebook/wav2vec2 - large - xlsr - 53) 模型進行印地語微調。使用該模型時,請確保語音輸入採樣率為 16kHz。
🔍 模型信息
屬性 |
詳情 |
模型類型 |
自動語音識別 |
基礎模型 |
facebook/wav2vec2 - large - xlsr - 53 |
評估指標 |
詞錯誤率(WER) |
訓練語言 |
印地語(hi) |
🚀 快速開始
本模型可直接使用(無需語言模型),以下是使用示例:
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
📊 評估
可按以下方式在 Common Voice 的印地語測試數據上對模型進行評估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:72.62 %
🛠️ 訓練
用於訓練的腳本可在 [印地語自動語音識別微調 Wav2Vec2](https://colab.research.google.com/drive/1m - F7et3CHT_kpFqg7UffTIwnUV9AKgrg?usp=sharing) 找到。