模型概述
模型特點
模型能力
使用案例
🚀 Wav2Vec2 XLS - R 300M 粵語 (zh - HK) 語言模型
Wav2Vec2 XLS - R 300M 粵語 (zh - HK) 語言模型是一個自動語音識別模型,它能夠將粵語語音準確地轉換為文本,為粵語語音處理提供了高效的解決方案,在粵語語音識別相關應用場景中具有重要價值。
🚀 快速開始
Wav2Vec2 XLS - R 300M 粵語 (zh - HK) 語言模型是基於 XLS - R 架構的自動語音識別模型。該模型是 [Wav2Vec2 - XLS - R - 300M](https://huggingface.co/facebook/wav2vec2 - xls - r - 300m) 在 Common Voice 數據集的 zh - HK
子集上微調後的版本。隨後,我們在這個模型中添加了一個基於多個 PyCantonese 語料庫訓練的 5 - 元語言模型。
此模型使用 HuggingFace 的 PyTorch 框架進行訓練,是 HuggingFace 組織的 [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open - to - the - community - robust - speech - recognition - challenge/13614) 的一部分。所有訓練工作均在由 OVH 贊助的 Tesla V100 上完成。
所有用於訓練的必要腳本可以在 [Files and versions](https://huggingface.co/w11wo/wav2vec2 - xls - r - 300m - zh - HK - lm - v2/tree/main) 標籤中找到,通過 Tensorboard 記錄的 [Training metrics](https://huggingface.co/w11wo/wav2vec2 - xls - r - 300m - zh - HK - lm - v2/tensorboard) 也可查看。
關於 N - 元語言模型的訓練,我們遵循了 HuggingFace 提供的 [blog post tutorial](https://huggingface.co/blog/wav2vec2 - with - ngram)。
✨ 主要特性
- 基於先進架構:採用 XLS - R 架構,具有強大的特徵提取和語音識別能力。
- 多語料訓練:使用
Common Voice zh - HK
數據集進行訓練,並結合基於多個 PyCantonese 語料庫訓練的 5 - 元語言模型,提升識別準確性。 - 開源可復現:所有訓練腳本和訓練指標均可在 HuggingFace 上查看,方便研究人員復現和改進。
📚 詳細文檔
模型
屬性 | 詳情 |
---|---|
模型名稱 | wav2vec2 - xls - r - 300m - zh - HK - lm - v2 |
參數數量 | 300M |
架構類型 | XLS - R |
訓練/驗證數據(文本) | Common Voice zh - HK 數據集 |
評估結果
無語言模型評估
該模型在無語言模型的評估中取得了以下結果:
數據集 | 字符錯誤率 (CER) |
---|---|
Common Voice |
31.73% |
Common Voice 7 |
23.11% |
Common Voice 8 |
23.02% |
Robust Speech Event - Dev Data |
56.60% |
有語言模型評估
添加語言模型後,模型取得了以下結果:
數據集 | 字符錯誤率 (CER) |
---|---|
Common Voice |
24.09% |
Common Voice 7 |
23.10% |
Common Voice 8 |
23.02% |
Robust Speech Event - Dev Data |
56.86% |
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
learning_rate
:0.0001train_batch_size
:8eval_batch_size
:8seed
:42gradient_accumulation_steps
:4total_train_batch_size
:32optimizer
:Adam,betas=(0.9, 0.999)
,epsilon = 1e - 08
lr_scheduler_type
:線性lr_scheduler_warmup_steps
:2000num_epochs
:100.0mixed_precision_training
:Native AMP
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 詞錯誤率 (Wer) | 字符錯誤率 (Cer) |
---|---|---|---|---|---|
69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 |
6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 |
6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 |
6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 |
5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 |
5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 |
5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 |
5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 |
4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 |
3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 |
3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 |
3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 |
3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 |
3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 |
3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 |
2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 |
2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 |
2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 |
2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 |
2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 |
2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 |
2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 |
2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 |
2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 |
2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 |
2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 |
2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 |
2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 |
2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 |
2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 |
1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 |
1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 |
1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 |
1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 |
1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 |
1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 |
1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 |
1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 |
1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 |
1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 |
1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 |
1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 |
1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 |
1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 |
1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 |
1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 |
1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 |
1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 |
1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 |
1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 |
1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 |
1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 |
1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 |
1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 |
1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 |
1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 |
1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 |
1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 |
1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 |
1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 |
1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 |
1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 |
1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 |
1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 |
1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 |
1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 |
1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 |
0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 |
1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 |
1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 |
1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 |
0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 |
0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 |
1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 |
免責聲明
請考慮預訓練數據集中可能存在的偏差,這些偏差可能會影響該模型的結果。
作者
Wav2Vec2 XLS - R 300M 粵語 (zh - HK) 語言模型由 Wilson Wongso 進行訓練和評估。所有計算和開發工作均在 OVH Cloud 上完成。
框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
📄 許可證
本項目採用 Apache - 2.0 許可證。



