🚀 使用HuBERT進行土耳其語語音情感識別
本項目利用基於TurEV-DB數據集訓練的HuBERT模型,實現了土耳其語語音情感識別(SER)。
🚀 快速開始
✨ 主要特性
- 基於HuBERT模型,在土耳其語語音情感識別任務上表現出色。
- 可準確識別憤怒、平靜、快樂和悲傷等多種情感。
📦 安裝指南
依賴包安裝
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
克隆項目倉庫
!git clone https://github.com/SeaBenSea/HuBERT-SER.git
💻 使用示例
基礎用法
import sys
sys.path.insert(1, './HuBERT-SER/')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
高級用法
model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
enumerate(scores)]
return outputs
path = "../dataset/TurEV/Angry/1157_kz_acik.wav"
outputs = predict(path, sampling_rate)
outputs
預測結果示例
[
{'Emotion': 'Angry', 'Score': '99.8%'},
{'Emotion': 'Calm', 'Score': '0.0%'},
{'Emotion': 'Happy', 'Score': '0.1%'},
{'Emotion': 'Sad', 'Score': '0.1%'}
]
📚 詳細文檔
評估指標
以下表格總結了模型在整體和每個類別上的得分:
情感 |
精確率 |
召回率 |
F1分數 |
準確率 |
憤怒 |
0.97 |
0.99 |
0.98 |
|
平靜 |
0.89 |
0.95 |
0.92 |
|
快樂 |
0.98 |
0.93 |
0.95 |
|
悲傷 |
0.97 |
0.93 |
0.95 |
|
|
|
|
總體 |
0.95 |
📄 許可證
本項目採用Apache-2.0許可證。
問題反饋
如果您有任何問題,請從這裡提交GitHub問題。