🚀 使用HuBERT进行土耳其语语音情感识别
本项目利用基于TurEV-DB数据集训练的HuBERT模型,实现了土耳其语语音情感识别(SER)。
🚀 快速开始
✨ 主要特性
- 基于HuBERT模型,在土耳其语语音情感识别任务上表现出色。
- 可准确识别愤怒、平静、快乐和悲伤等多种情感。
📦 安装指南
依赖包安装
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
克隆项目仓库
!git clone https://github.com/SeaBenSea/HuBERT-SER.git
💻 使用示例
基础用法
import sys
sys.path.insert(1, './HuBERT-SER/')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
高级用法
model_name_or_path = "SeaBenSea/hubert-large-turkish-speech-emotion-recognition"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in
enumerate(scores)]
return outputs
path = "../dataset/TurEV/Angry/1157_kz_acik.wav"
outputs = predict(path, sampling_rate)
outputs
预测结果示例
[
{'Emotion': 'Angry', 'Score': '99.8%'},
{'Emotion': 'Calm', 'Score': '0.0%'},
{'Emotion': 'Happy', 'Score': '0.1%'},
{'Emotion': 'Sad', 'Score': '0.1%'}
]
📚 详细文档
评估指标
以下表格总结了模型在整体和每个类别上的得分:
情感 |
精确率 |
召回率 |
F1分数 |
准确率 |
愤怒 |
0.97 |
0.99 |
0.98 |
|
平静 |
0.89 |
0.95 |
0.92 |
|
快乐 |
0.98 |
0.93 |
0.95 |
|
悲伤 |
0.97 |
0.93 |
0.95 |
|
|
|
|
总体 |
0.95 |
📄 许可证
本项目采用Apache-2.0许可证。
问题反馈
如果您有任何问题,请从这里提交GitHub问题。