🚀 aradia-ctc-hubert-ft
aradia-ctc-hubert-ft 是一個基於自動語音識別技術的模型,它在 ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA 數據集上微調,在評估集上有不錯的表現。
🚀 快速開始
該模型是 /l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft 在 ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值(Loss):0.8536
- 字錯率(Wer):0.3737
🔧 技術細節
訓練超參數
訓練過程中使用了以下超參數:
- 學習率(learning_rate):0.0003
- 訓練批次大小(train_batch_size):32
- 評估批次大小(eval_batch_size):32
- 隨機種子(seed):42
- 梯度累積步數(gradient_accumulation_steps):2
- 總訓練批次大小(total_train_batch_size):64
- 優化器(optimizer):Adam,β值為(0.9, 0.999),ε值為 1e-08
- 學習率調度器類型(lr_scheduler_type):線性
- 學習率調度器熱身步數(lr_scheduler_warmup_steps):500
- 訓練輪數(num_epochs):30.0
- 混合精度訓練(mixed_precision_training):原生自動混合精度(Native AMP)
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
字錯率 |
無記錄 |
0.43 |
100 |
3.6934 |
1.0 |
無記錄 |
0.87 |
200 |
3.0763 |
1.0 |
無記錄 |
1.3 |
300 |
2.9737 |
1.0 |
無記錄 |
1.74 |
400 |
2.5734 |
1.0 |
5.0957 |
2.17 |
500 |
1.1900 |
0.9011 |
5.0957 |
2.61 |
600 |
0.9726 |
0.7572 |
5.0957 |
3.04 |
700 |
0.8960 |
0.6209 |
5.0957 |
3.48 |
800 |
0.7851 |
0.5515 |
5.0957 |
3.91 |
900 |
0.7271 |
0.5115 |
1.0312 |
4.35 |
1000 |
0.7053 |
0.4955 |
1.0312 |
4.78 |
1100 |
0.6823 |
0.4737 |
1.0312 |
5.22 |
1200 |
0.6768 |
0.4595 |
1.0312 |
5.65 |
1300 |
0.6635 |
0.4488 |
1.0312 |
6.09 |
1400 |
0.6602 |
0.4390 |
0.6815 |
6.52 |
1500 |
0.6464 |
0.4310 |
0.6815 |
6.95 |
1600 |
0.6455 |
0.4394 |
0.6815 |
7.39 |
1700 |
0.6630 |
0.4312 |
0.6815 |
7.82 |
1800 |
0.6521 |
0.4126 |
0.6815 |
8.26 |
1900 |
0.6282 |
0.4284 |
0.544 |
8.69 |
2000 |
0.6248 |
0.4178 |
0.544 |
9.13 |
2100 |
0.6510 |
0.4104 |
0.544 |
9.56 |
2200 |
0.6527 |
0.4013 |
0.544 |
10.0 |
2300 |
0.6511 |
0.4064 |
0.544 |
10.43 |
2400 |
0.6734 |
0.4061 |
0.4478 |
10.87 |
2500 |
0.6756 |
0.4145 |
0.4478 |
11.3 |
2600 |
0.6727 |
0.3990 |
0.4478 |
11.74 |
2700 |
0.6619 |
0.4007 |
0.4478 |
12.17 |
2800 |
0.6614 |
0.4019 |
0.4478 |
12.61 |
2900 |
0.6695 |
0.4004 |
0.3919 |
13.04 |
3000 |
0.6778 |
0.3966 |
0.3919 |
13.48 |
3100 |
0.6872 |
0.3971 |
0.3919 |
13.91 |
3200 |
0.6882 |
0.3945 |
0.3919 |
14.35 |
3300 |
0.7177 |
0.4010 |
0.3919 |
14.78 |
3400 |
0.6888 |
0.4043 |
0.3767 |
15.22 |
3500 |
0.7124 |
0.4202 |
0.3767 |
15.65 |
3600 |
0.7276 |
0.4120 |
0.3767 |
16.09 |
3700 |
0.7265 |
0.4034 |
0.3767 |
16.52 |
3800 |
0.7392 |
0.4077 |
0.3767 |
16.95 |
3900 |
0.7403 |
0.3965 |
0.3603 |
17.39 |
4000 |
0.7445 |
0.4016 |
0.3603 |
17.82 |
4100 |
0.7579 |
0.4012 |
0.3603 |
18.26 |
4200 |
0.7225 |
0.3963 |
0.3603 |
18.69 |
4300 |
0.7355 |
0.3951 |
0.3603 |
19.13 |
4400 |
0.7482 |
0.3925 |
0.3153 |
19.56 |
4500 |
0.7723 |
0.3972 |
0.3153 |
20.0 |
4600 |
0.7469 |
0.3898 |
0.3153 |
20.43 |
4700 |
0.7800 |
0.3944 |
0.3153 |
20.87 |
4800 |
0.7827 |
0.3897 |
0.3153 |
21.3 |
4900 |
0.7935 |
0.3914 |
0.286 |
21.74 |
5000 |
0.7984 |
0.3750 |
0.286 |
22.17 |
5100 |
0.7945 |
0.3830 |
0.286 |
22.61 |
5200 |
0.8011 |
0.3775 |
0.286 |
23.04 |
5300 |
0.7978 |
0.3824 |
0.286 |
23.48 |
5400 |
0.8161 |
0.3833 |
0.2615 |
23.91 |
5500 |
0.7823 |
0.3858 |
0.2615 |
24.35 |
5600 |
0.8312 |
0.3863 |
0.2615 |
24.78 |
5700 |
0.8427 |
0.3819 |
0.2615 |
25.22 |
5800 |
0.8432 |
0.3802 |
0.2615 |
25.65 |
5900 |
0.8286 |
0.3794 |
0.2408 |
26.09 |
6000 |
0.8224 |
0.3824 |
0.2408 |
26.52 |
6100 |
0.8228 |
0.3823 |
0.2408 |
26.95 |
6200 |
0.8324 |
0.3795 |
0.2408 |
27.39 |
6300 |
0.8564 |
0.3744 |
0.2408 |
27.82 |
6400 |
0.8629 |
0.3774 |
0.2254 |
28.26 |
6500 |
0.8545 |
0.3778 |
0.2254 |
28.69 |
6600 |
0.8492 |
0.3767 |
0.2254 |
29.13 |
6700 |
0.8511 |
0.3751 |
0.2254 |
29.56 |
6800 |
0.8491 |
0.3753 |
0.2254 |
30.0 |
6900 |
0.8536 |
0.3737 |
框架版本
- Transformers:4.18.0.dev0
- Pytorch:1.10.2+cu113
- Datasets:1.18.4
- Tokenizers:0.11.6