🚀 wav2vec2-large-xls-r-300m-guarani-small-wb
本模型是 glob-asr/wav2vec2-large-xls-r-300m-guarani-small 在 common_voice 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值(Loss):0.1622
- 字錯率(Wer):0.2446
- 字符錯誤率(Cer):0.0368
📚 詳細文檔
訓練和評估數據
原文檔未提供相關詳細信息。
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率(learning_rate):0.0002
- 訓練批次大小(train_batch_size):8
- 評估批次大小(eval_batch_size):8
- 隨機種子(seed):42
- 梯度累積步數(gradient_accumulation_steps):2
- 總訓練批次大小(total_train_batch_size):16
- 優化器(optimizer):Adam,β值為(0.9, 0.999),ε值為 1e-08
- 學習率調度器類型(lr_scheduler_type):線性
- 學習率調度器熱身步數(lr_scheduler_warmup_steps):10
- 訓練輪數(num_epochs):20
- 混合精度訓練(mixed_precision_training):原生自動混合精度(Native AMP)
訓練結果
訓練損失值 |
訓練輪數 |
訓練步數 |
驗證損失值 |
字錯率 |
字符錯誤率 |
0.1818 |
0.32 |
10 |
0.1196 |
0.2146 |
0.0305 |
0.2953 |
0.65 |
20 |
0.1801 |
0.3090 |
0.0426 |
0.2941 |
0.97 |
30 |
0.1935 |
0.3090 |
0.0420 |
0.2786 |
1.29 |
40 |
0.1899 |
0.3305 |
0.0483 |
0.2665 |
1.61 |
50 |
0.1716 |
0.3176 |
0.0454 |
0.2752 |
1.94 |
60 |
0.1895 |
0.3948 |
0.0564 |
0.2482 |
2.26 |
70 |
0.1753 |
0.3176 |
0.0449 |
0.2486 |
2.58 |
80 |
0.1501 |
0.2747 |
0.0403 |
0.2878 |
2.9 |
90 |
0.1890 |
0.3348 |
0.0529 |
0.2539 |
3.23 |
100 |
0.2076 |
0.4635 |
0.0610 |
0.2069 |
3.55 |
110 |
0.1711 |
0.3476 |
0.0466 |
0.2262 |
3.87 |
120 |
0.1839 |
0.3605 |
0.0500 |
0.2032 |
4.19 |
130 |
0.1724 |
0.3391 |
0.0489 |
0.1997 |
4.52 |
140 |
0.1498 |
0.2704 |
0.0414 |
0.2216 |
4.84 |
150 |
0.1531 |
0.3047 |
0.0472 |
0.2294 |
5.16 |
160 |
0.1882 |
0.3176 |
0.0500 |
0.2305 |
5.48 |
170 |
0.1799 |
0.3176 |
0.0483 |
0.2052 |
5.81 |
180 |
0.1645 |
0.3262 |
0.0477 |
0.2192 |
6.13 |
190 |
0.1439 |
0.2060 |
0.0339 |
0.1844 |
6.45 |
200 |
0.1557 |
0.2918 |
0.0403 |
0.1803 |
6.77 |
210 |
0.1664 |
0.3004 |
0.0426 |
0.1831 |
7.1 |
220 |
0.1780 |
0.3176 |
0.0477 |
0.1618 |
7.42 |
230 |
0.1671 |
0.2661 |
0.0437 |
0.1528 |
7.74 |
240 |
0.2108 |
0.3176 |
0.0506 |
0.1335 |
8.06 |
250 |
0.1677 |
0.2575 |
0.0408 |
0.1736 |
8.39 |
260 |
0.1581 |
0.3004 |
0.0460 |
0.1607 |
8.71 |
270 |
0.1529 |
0.3047 |
0.0403 |
0.1451 |
9.03 |
280 |
0.1666 |
0.2747 |
0.0408 |
0.1534 |
9.35 |
290 |
0.1722 |
0.2833 |
0.0437 |
0.1567 |
9.68 |
300 |
0.1747 |
0.2918 |
0.0397 |
0.1356 |
10.0 |
310 |
0.1659 |
0.2961 |
0.0443 |
0.1248 |
10.32 |
320 |
0.1752 |
0.3348 |
0.0449 |
0.149 |
10.65 |
330 |
0.1792 |
0.3348 |
0.0449 |
0.1471 |
10.97 |
340 |
0.1843 |
0.3391 |
0.0460 |
0.1564 |
11.29 |
350 |
0.2015 |
0.3433 |
0.0460 |
0.1597 |
11.61 |
360 |
0.1798 |
0.2618 |
0.0380 |
0.161 |
11.94 |
370 |
0.1716 |
0.2747 |
0.0374 |
0.1481 |
12.26 |
380 |
0.1776 |
0.2747 |
0.0397 |
0.1168 |
12.58 |
390 |
0.1900 |
0.2961 |
0.0454 |
0.1173 |
12.9 |
400 |
0.1987 |
0.3090 |
0.0454 |
0.1245 |
13.23 |
410 |
0.1710 |
0.2918 |
0.0408 |
0.1118 |
13.55 |
420 |
0.1808 |
0.3047 |
0.0431 |
0.1111 |
13.87 |
430 |
0.1893 |
0.2747 |
0.0403 |
0.1041 |
14.19 |
440 |
0.1876 |
0.2918 |
0.0431 |
0.1152 |
14.52 |
450 |
0.1800 |
0.2790 |
0.0408 |
0.107 |
14.84 |
460 |
0.1717 |
0.2747 |
0.0385 |
0.1139 |
15.16 |
470 |
0.1652 |
0.2704 |
0.0391 |
0.0922 |
15.48 |
480 |
0.1659 |
0.2618 |
0.0391 |
0.101 |
15.81 |
490 |
0.1610 |
0.2489 |
0.0362 |
0.0835 |
16.13 |
500 |
0.1584 |
0.2403 |
0.0362 |
0.1251 |
16.45 |
510 |
0.1601 |
0.2575 |
0.0380 |
0.0888 |
16.77 |
520 |
0.1632 |
0.2661 |
0.0380 |
0.0968 |
17.1 |
530 |
0.1674 |
0.2661 |
0.0385 |
0.1105 |
17.42 |
540 |
0.1629 |
0.2833 |
0.0391 |
0.0914 |
17.74 |
550 |
0.1623 |
0.3090 |
0.0408 |
0.0843 |
18.06 |
560 |
0.1611 |
0.3004 |
0.0408 |
0.0861 |
18.39 |
570 |
0.1583 |
0.2661 |
0.0385 |
0.0861 |
18.71 |
580 |
0.1579 |
0.2618 |
0.0385 |
0.0678 |
19.03 |
590 |
0.1585 |
0.2661 |
0.0374 |
0.0934 |
19.35 |
600 |
0.1613 |
0.2489 |
0.0368 |
0.0976 |
19.68 |
610 |
0.1617 |
0.2446 |
0.0368 |
0.0799 |
20.0 |
620 |
0.1622 |
0.2446 |
0.0368 |
框架版本
- Transformers:4.18.0
- Pytorch:1.11.0+cu113
- Datasets:2.1.0
- Tokenizers:0.12.1
📄 許可證
本模型採用 Apache-2.0 許可證。