🚀 {AnanyaCoder/XLsim_en-de}
XLSim是一種基於孿生網絡架構的機器翻譯評估指標。它是一種有監督的、基於參考的指標,通過對WMT(2017 - 2022)提供的人工評分進行迴歸分析得出結果。我們使用跨語言語言模型XLM - RoBERTa - base [ https://huggingface.co/xlm - roberta - base ],結合孿生網絡架構和餘弦相似度損失函數來訓練有監督模型。
🚀 快速開始
安裝依賴
若要使用該模型,你需要安裝sentence - transformers:
pip install -U sentence-transformers
代碼示例
安裝完成後,你可以按照以下方式使用該模型:
from sentence_transformers import SentenceTransformer, losses, models, util
metric_model = SentenceTransformer('{MODEL_NAME}')
mt_samples = ['This is a mt sentence1', 'This is a mt sentence2']
ref_samples = ['This is a ref sentence1', 'This is a ref sentence2']
mtembeddings = metric_model.encode(mt_samples, convert_to_tensor=True)
refembeddings = metric_model.encode(ref_samples, convert_to_tensor=True)
cosine_scores_refmt = util.cos_sim(mtembeddings, refembeddings)
metric_model_scores = []
for i in range(len(mt_samples)):
metric_model_scores.append(cosine_scores_refmt[i][i].tolist())
scores = metric_model_scores
📚 詳細文檔
評估結果
關於該模型的自動評估,請參考:[WMT23 Metrics Shared Task findings](https://aclanthology.org/2023.wmt - 1.51.pdf)
訓練參數
該模型的訓練參數如下:
數據加載器
使用torch.utils.data.dataloader.DataLoader
,長度為6625,參數如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
使用sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
。
fit()方法的參數
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e - 05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2650,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
更多信息請參考:[MEE4 and XLsim : IIIT HYD’s Submissions’ for WMT23 Metrics Shared Task](https://aclanthology.org/2023.wmt - 1.66) (Mukherjee & Shrivastava, WMT 2023)