🚀 {AnanyaCoder/XLsim_en-de}
XLSim是一种基于孪生网络架构的机器翻译评估指标。它是一种有监督的、基于参考的指标,通过对WMT(2017 - 2022)提供的人工评分进行回归分析得出结果。我们使用跨语言语言模型XLM - RoBERTa - base [ https://huggingface.co/xlm - roberta - base ],结合孪生网络架构和余弦相似度损失函数来训练有监督模型。
🚀 快速开始
安装依赖
若要使用该模型,你需要安装sentence - transformers:
pip install -U sentence-transformers
代码示例
安装完成后,你可以按照以下方式使用该模型:
from sentence_transformers import SentenceTransformer, losses, models, util
metric_model = SentenceTransformer('{MODEL_NAME}')
mt_samples = ['This is a mt sentence1', 'This is a mt sentence2']
ref_samples = ['This is a ref sentence1', 'This is a ref sentence2']
mtembeddings = metric_model.encode(mt_samples, convert_to_tensor=True)
refembeddings = metric_model.encode(ref_samples, convert_to_tensor=True)
cosine_scores_refmt = util.cos_sim(mtembeddings, refembeddings)
metric_model_scores = []
for i in range(len(mt_samples)):
metric_model_scores.append(cosine_scores_refmt[i][i].tolist())
scores = metric_model_scores
📚 详细文档
评估结果
关于该模型的自动评估,请参考:[WMT23 Metrics Shared Task findings](https://aclanthology.org/2023.wmt - 1.51.pdf)
训练参数
该模型的训练参数如下:
数据加载器
使用torch.utils.data.dataloader.DataLoader
,长度为6625,参数如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
使用sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
。
fit()方法的参数
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e - 05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2650,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
更多信息请参考:[MEE4 and XLsim : IIIT HYD’s Submissions’ for WMT23 Metrics Shared Task](https://aclanthology.org/2023.wmt - 1.66) (Mukherjee & Shrivastava, WMT 2023)