🚀 PPO智能體玩PongNoFrameskip - v4
本項目是一個經過訓練的PPO智能體使用[stable - baselines3庫](https://stable - baselines3.readthedocs.io/en/master/index.html)玩PongNoFrameskip - v4的模型(我們的智能體為🟢 )。
訓練報告:https://wandb.ai/simoninithomas/HFxSB3/reports/Atari - HFxSB3 - Benchmark--VmlldzoxNjI3NTIy
🚀 快速開始
評估結果
平均獎勵:21.00 +/- 0.0
📦 安裝指南
- 你需要使用
gym==0.19
,因為它包含Atari遊戲ROM。
- 動作空間為6,因為我們僅使用此遊戲中的可能動作。
💻 使用示例
基礎用法
觀察你的智能體進行交互:
import os
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecNormalize
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
from huggingface_sb3 import load_from_hub, push_to_hub
checkpoint = load_from_hub("ThomasSimonini/ppo-PongNoFrameskip-v4", "ppo-PongNoFrameskip-v4.zip")
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
model= PPO.load(checkpoint, custom_objects=custom_objects)
env = make_atari_env('PongNoFrameskip-v4', n_envs=1)
env = VecFrameStack(env, n_stack=4)
obs = env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
高級用法
以下是訓練代碼:
import wandb
import gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack, VecVideoRecorder
from stable_baselines3.common.callbacks import CheckpointCallback
from wandb.integration.sb3 import WandbCallback
from huggingface_sb3 import load_from_hub, push_to_hub
config = {
"env_name": "PongNoFrameskip-v4",
"num_envs": 8,
"total_timesteps": int(10e6),
"seed": 4089164106,
}
run = wandb.init(
project="HFxSB3",
config = config,
sync_tensorboard = True,
monitor_gym = True,
save_code = True,
)
env = make_atari_env(config["env_name"], n_envs=config["num_envs"], seed=config["seed"])
print("ENV ACTION SPACE: ", env.action_space.n)
env = VecFrameStack(env, n_stack=4)
env = VecVideoRecorder(env, "videos", record_video_trigger=lambda x: x % 100000 == 0, video_length=2000)
model = PPO(policy = "CnnPolicy",
env = env,
batch_size = 256,
clip_range = 0.1,
ent_coef = 0.01,
gae_lambda = 0.9,
gamma = 0.99,
learning_rate = 2.5e-4,
max_grad_norm = 0.5,
n_epochs = 4,
n_steps = 128,
vf_coef = 0.5,
tensorboard_log = f"runs",
verbose=1,
)
model.learn(
total_timesteps = config["total_timesteps"],
callback = [
WandbCallback(
gradient_save_freq = 1000,
model_save_path = f"models/{run.id}",
),
CheckpointCallback(save_freq=10000, save_path='./pong',
name_prefix=config["env_name"]),
]
)
model.save("ppo-PongNoFrameskip-v4.zip")
push_to_hub(repo_id="ThomasSimonini/ppo-PongNoFrameskip-v4",
filename="ppo-PongNoFrameskip-v4.zip",
commit_message="Added Pong trained agent")
📚 詳細文檔
屬性 |
詳情 |
模型類型 |
PPO智能體 |
訓練數據 |
PongNoFrameskip - v4遊戲環境 |
📄 許可證
文檔中未提及許可證信息。