🚀 帶有DINOv2主幹的DPT模型
本模型結合了DPT(Dense Prediction Transformer)架構與DINOv2主幹,能夠有效進行深度估計,為視覺領域的相關任務提供了強大的支持。
🚀 快速開始
模型詳情
DPT(Dense Prediction Transformer)模型採用了DINOv2作為主幹,該架構由Oquab等人在論文 DINOv2: Learning Robust Visual Features without Supervision 中提出。

DPT架構。取自 原論文。
參考資源
使用Transformers庫調用模型
from transformers import AutoImageProcessor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-base-nyu")
model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-base-nyu")
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
📚 詳細文檔
模型用途
預期用途
該模型旨在展示使用DPT框架並以DINOv2作為主幹可以得到一個強大的深度估計器。
BibTeX引用信息
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
year={2023},
eprint={2304.07193},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
📄 許可證
本項目採用Apache-2.0許可證。