🚀 輕量級圖像描述模型
這是一個基於bert - tiny和vit - small的圖像描述模型,僅100mb!它在CPU上運行速度極快,能高效完成圖像描述任務。
🚀 快速開始
安裝依賴
確保你已經安裝了transformers
庫,若未安裝,可以使用以下命令進行安裝:
pip install transformers requests pillow
運行示例代碼
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/tiny-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
✨ 主要特性
- 輕量級:模型僅100mb,佔用資源少。
- 高效推理:在CPU上也能實現快速推理。
📦 安裝指南
使用pip
安裝必要的庫:
pip install transformers requests pillow
💻 使用示例
基礎用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/tiny-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
高級用法
如果你希望進一步提高推理速度,可以將num_beams
參數設置為1,但可能會導致生成質量略有下降:
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=1
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
📚 詳細文檔
模型信息
屬性 |
詳情 |
基礎模型 |
WinKawaks/vit - small - patch16 - 224、google/bert_uncased_L - 2_H - 128_A - 2 |
模型類型 |
圖像描述模型 |
庫名稱 |
transformers |
標籤 |
vit、bert、vision、caption、captioning、image |
📄 許可證
本項目採用Apache 2.0許可證。